

From Models to
Systems: GO HW
for Unified AI and
Hardware
Execution
Whitepaper 1.3

1

Table of Contents
Versioning .. 3

Executive Summary .. 4

From a static file to a living graph ... 5

ONNX in plain language ... 5

ONNX Runtime in practice ... 6

Compiler strategy: IR-last today, IR-first optional tomorrow. 7

Graph computing as a quiet revolution ... 8

Back to the 80s, NI and the birth of LabVIEW ... 9

Graiphic chapter 1 — A Keras style toolkit that hit two walls 10

Graiphic chapter 2 — one file, one engine, one cockpit .. 11

From inference to training and orchestration, still a graph 14

The NI Connect moment ... 15

SoC basics without the jargon ... 16

State of the Art in Graph Computing and Hardware Orchestration (2021–2025) 17

Introduction ... 17

Graph Compilers and Runtimes ... 18

Pipeline Orchestration Frameworks .. 18

Hardware-Specific SDKs and DSLs ... 19

Limitations of the Current State of the Art ... 19

Transition to GO HW .. 19

Comparative Snapshot .. 20

Closing Sentence .. 20

GO HW, a concrete path from static description to dynamic technology 20

GO HW on SoCs, author, configure, deploy, monitor .. 21

Energy-Aware Graphs and Forensic Monitoring ... 24

LabVIEW-native forensic measurement. .. 25

Open benchmarking and transparent culture. .. 25

Algorithmic Enhancements: Dynamic Loss Functions and Informed Learning through
Full Graph Orchestration ... 26

Dynamic, energy-aware loss design. ... 26

Graph-compilation efficiency as orchestration property. 26

2

Integration of alternative learning paradigms. .. 26

Impact: Green AI by design. .. 27

Energy-aware contributions of SOTA and GO HW ... 27

Closing, one graph, many roles .. 28

Implementation and Deployment of ONNX GO HW on SoCs (Raspberry Pi 5 as First
Case Study) ... 29

Proposed Path Forward for ONNX steering committee ... 34

Why ONNX Needs a Hardware Working Group, Strategic Rationale 35

Target platform matrix for GO HW v1.0 .. 39

Frequently Asked Questions (FAQ) ... 40

Call for Funding: Why Industry Should Invest in GO HW ... 42

Annexes ... 43

Support Letters ... 43

Graph Computing for AI Systems: State-of-the-Art (2021–2025) 45

Introduction .. 45

Academic Advances in Graph Computing (2021–2025)....................................... 45

Industrial Frameworks and Ecosystems .. 47

Toward Unified Graph Orchestration: ONNX GO HW vs. Existing Solutions........... 51

3

Versioning
This document is subject to version control to ensure full traceability of changes. Each
update is recorded with its author, date, and a short description of the modifications.

Version Date Author Organization Change Description

1.0 2025/08/31 Youssef Menjour Graiphic First publication of the GO HW
Whitepaper

1.1 2025/09/04 Youssef Menjour Graiphic No SONNX

1.2 2025/09/11 Youssef Menjour Graiphic FAQ update

1.3 2025/09/18 Youssef Menjour Graiphic IR First / Last

mailto:contact@graiphic.io?subject=From%20Models%20to%20Systems:%20GO%20HW%20for%20Unified%20AI%20and%20Hardware%20Execution
mailto:contact@graiphic.io?subject=From%20Models%20to%20Systems:%20GO%20HW%20for%20Unified%20AI%20and%20Hardware%20Execution
mailto:contact@graiphic.io?subject=From%20Models%20to%20Systems:%20GO%20HW%20for%20Unified%20AI%20and%20Hardware%20Execution
mailto:contact@graiphic.io?subject=From%20Models%20to%20Systems:%20GO%20HW%20for%20Unified%20AI%20and%20Hardware%20Execution

4

Executive Summary
ONNX has established itself as the de facto standard for portable AI inference, allowing
models to run efficiently across CPUs, GPUs, FPGAs and NPUs. Graiphic’s work builds
directly on this foundation and extends ONNX into a much broader role: not only a format
for inference, but a complete framework for orchestrating AI, logic and hardware in a
unified and transparent way.
This evolution has unfolded in three major steps. First, we enabled training workflows
inside ONNX, combined with LabVIEW orchestration, which are already used in Graiphic’s
Deep Learning Toolkit. Second, we introduced ONNX GO, an orchestration layer that
supports control structures such as conditionals, loops and runtime branching, and
which is already deployed in the LabVIEW Accelerator Toolkit. The third step, which this
document focuses on, is ONNX GO HW: a new layer that integrates hardware primitives
such as DMA transfers, GPIO, ADC/DAC and timers directly into ONNX graphs.
The goal of ONNX GO HW is to make hardware orchestration as seamless and
standardized as AI inference itself. The analogy with NI’s DAQmx is intentional: just as
DAQmx unified hardware configuration and access through a single interface, ONNX GO
HW provides an open and portable representation of hardware tasks that can be defined
and scheduled inside ONNX graphs. Unlike DAQmx, this approach is not tied to
proprietary APIs or devices but remains compatible across multiple runtimes and
platforms.
LabVIEW plays a central role as the natural cockpit for this technology. Engineers can
visually design, deploy and monitor systems that combine artificial intelligence with real-
world hardware control, all within a single workflow. This creates a powerful bridge
between abstract AI models and physical systems, with immediate benefits in test and
measurement, robotics, industrial automation, aerospace and defense.
ONNX GO HW introduces a new paradigm in execution. By embedding hardware
orchestration into standardized graphs, it transforms ONNX from a static description of
models into a dynamic and auditable framework capable of managing the entire lifecycle
of intelligent systems.

5

From a static file to a living graph

Every ONNX model is a little play. The cast are nodes, the props are tensors, and the
script is the graph. Most of us only hire the math stars that do convolutions, matmuls, and
activations. Three quiet actors wait in the wings: If, Loop, and Scan. They rarely get called
when we only do classic deep learning inference, yet they hold the keys to choreography.
With them, a graph can describe not just what to compute, but when to compute and how
often to repeat. That is where the story gets interesting.

We call this idea GO, for graph orchestration. GO is the goal of turning ONNX from a static
description into a dynamic technology. The artifact stays the same, yet the way we use it
changes. ONNX brings a universal, interoperable format. ONNX Runtime brings an
efficient execution engine. Together they already run fast on many targets. With GO, the
graph also carries schedules and control flow in a first-class way, so you coordinate
learning loops, evaluation passes, and model lifecycle without leaving the ONNX world.

There is a catch. ONNX today shines as a file format and as a runtime target, yet it lacks
a native editor. You can convert from popular frameworks, you can execute with ONNX
Runtime, but you cannot comfortably import, edit, and create ONNX graphs without going
back to third party toolchains. That dependency keeps ONNX as an excellent tool, not yet
a complete graph computing framework. It slows innovation because the ideas must pass
through a different language before they become ONNX.

This is the gap Graiphic is closing. We keep ONNX as the single source of truth, expose
both levels of abstraction, and make the control flow nodes easy to use. Engineers can
work at a Keras style layer level. Researchers can sculpt at the node level. Everyone edits
the same graph, saves the same format, and benefits from the same runtime.

ONNX in plain language

Before we orchestrate anything, let us make the building blocks feel familiar. ONNX
is an open way to write a computation as a graph. A node is an operation. An edge carries
a tensor from one node to the next. Some tensors are not inputs at all but weights stored
inside the model. Each node has attributes that set its behavior, for example a kernel size
or an activation choice. Put these pieces together and you have a recipe the computer
can follow step by step.

Think of ONNX as sheet music. The notes are operations like MatMul, Conv, Add, Relu.
The bars are tensors that flow across the page. The tempo is set by shapes and types that
tell the runtime how large the arrays are and how they line up in memory. A model file
simply packages the score with its instruments. It contains the graph, the weights, the
operator set version, and a little metadata such as names and documentation. You can
pass this file between tools and keep meaning intact.

Why is this useful beyond conversion? Because a graph is precise and inspectable. You
can open it, count the tensors, check the shapes, and see exactly how data moves. You
can split it in two, reuse a prefix, or swap a small part without touching the rest. You can

6

run it on a laptop, a workstation, or a small board and expect the same logical behavior.
When a team says one source of truth, this is what they mean.

If, Loop, and Scan enable control flow inside the graph, essential for orchestration and
training logic. They’re already part of ONNX and will be key to express full execution
schedules. If choose a path based on a condition. Loop repeats a subgraph and carries
state across steps. Scan walks over a sequence and collects results. Most people ignore
them when they only deploy a fixed network, yet they make the format future ready. They
are the handles we will use later to express schedules and learning cycles inside the same
artifact.

A final detail completes the picture. ONNX is neutral about taste. It does not force a style
like layers only or operators only. You can treat the graph as a high-level model if that is
the right abstraction for an engineer, or you can treat it as a set of fine-grained operators
if you are a researcher crafting something bespoke. The file does not change, only the
editor you prefer.

Cheat sheet
▪ Node: a single operation that consumes and produces tensors
▪ Tensor: an array with a shape and a data type
▪ Initializer: a tensor stored in the model, usually a weight
▪ Attribute: a small setting attached to a node
▪ Opset: the versioned catalog of available operators

ONNX Runtime in practice

Now that the score is clear, meet the conductor. ONNX Runtime reads the graph, plans
the work, and plays it efficiently on real hardware. It chooses kernels, arranges memory
so tensors land where they should, and removes extra steps by fusing compatible nodes.
The result is a compiled session that you can call many times with stable latency and a
predictable footprint.

Think of execution as a three-part routine. First comes analysis. The runtime checks
shapes and data types, folds constants, and prunes dead branches. Second comes
partitioning. Subgraphs are assigned to Execution Providers that know how to run them
fast, for example above the native CPU, CUDA and TensorRT for NVIDIA, oneDNN and
OpenVINO for Intel, ROCm and VitisAI for AMD, and DirectML for Windows GPUs. Third
comes scheduling. The runtime builds an execution plan that minimizes copies, aligns
layouts, and reuses memory arenas so nothing is allocated in the hot path.

A useful detail is that the graph stays the source of truth. You can inspect the optimized
graph, see which parts got fused, and verify exactly which provider runs which segment.
If a device is missing, the same artifact still runs on a plain CPU provider with the same
logical behavior, just at a different speed, that’s what we call the Fallback mechanism.
This keeps experiments honest and production portable.

Here is a simple way to place ONNX Runtime in your mental map.

7

Library vs runtime, in one glance

▪ A library gives you individual operations such as MatMul or Conv (examples:
CUDA, OneDNN, RocM, DirectML)

▪ A runtime takes a whole graph, compiles it end to end, and decides how and
where to run each part (examples: TensorRT, OpenVINO Runtime, VitisAI
Runtime, ONNX Runtime)

▪ Libraries are the instruments, the runtime is the conductor
▪ ONNX Runtime integrates with many runtimes and libraries via Execution

Providers and falls back to the CPU provider when needed

Two side effects matter in practice. Efficiency improves because the runtime can fuse
chains of operations and keep data in the right format between them. Energy improves
because fewer copies and fewer cache misses translate into less wasted work. Both
effects show up the moment you repeat inference at scale.

Compiler strategy: IR-last today, IR-first optional tomorrow.
An Intermediate Representation (IR) is the neutral “sheet music” of a program that
enables analysis, optimization, and lowering to hardware. Today we favor an IR-last path
with ONNX Runtime: the ONNX graph remains the source of truth while the runtime
performs graph-level optimizations and partitions subgraphs to hardware Execution
Providers (TensorRT, OpenVINO, DirectML, ROCm, …). This maximizes portability,
coverage, and time-to-first-inference. In parallel, we open an IR-first lane with MLIR:
models are lowered through dialects (e.g., ONNX or StableHLO) and compiled end-to-
end (e.g., via IREE or OpenXLA) for ahead-of-time specialization, tight latency budgets,
and target-specific scheduling. Bridges (ONNX-MLIR, StableHLO) make both lanes
interoperable. Net effect: under the same LabVIEW GUI and orchestration, users can pick
runtime breadth (IR-last) or compiler-grade specialization (IR-first) per deployment.

Dual IR Strategy — ORT (IR-last) vs MLIR (IR-first) under LabVIEW Orchestration

8

Graiphic deliberately starts with an IR-last path built on ONNX Runtime: the ONNX file
remains the single source of truth, while the runtime performs graph-level optimizations
and partitions subgraphs to hardware Execution Providers before scheduling them
efficiently. This maximizes portability, coverage, and time-to-first-inference. Next, we will
expose an optional IR-first lane based on MLIR (e.g., IREE/OpenXLA). When targets or
workloads benefit from ahead-of-time specialization, static-shape lowering, or custom
dialects, the same ONNX graph can be lowered to MLIR dialects and compiled end-to-
end to native executables. Users will choose per deployment between the ORT path (EP-
driven runtime) and the MLIR path (compiler pipeline), under the same LabVIEW cockpit,
device profiles, and monitoring plane. This dual strategy keeps our portability-first
promise while opening the door to compiler-grade determinism and specialization
where it matters.

Graph computing as a quiet revolution

Once you see a model as a graph, you start seeing most workflows as graphs. A graph is a
contract that lists the steps, the data that flows between them, and the rules that govern
the journey. It is transparent, easy to inspect, and easy to test. You can run a single
subgraph to debug an issue, then run the full plan with the confidence that the behavior
will match. This mindset turns scattered scripts into a single artifact that you can reason
about.

With If, Loop, and Scan, graphs can carry full training, evaluation, and control loops — all
in a reproducible, inspectable way.

Graphs also make optimization a first-class activity. Because the plan is explicit, a
runtime can fuse operations, reuse buffers, and select precisions that fit the budget.
Because the plan is versioned, a team can review changes, compare metrics, and roll
back without guessing which script or notebook drifted. Provenance stops being a
headache and turns into a property of the file.

This is why we describe GO as graph orchestration. The idea is simple. Keep one artifact.
Put both computation and schedule inside it. Let the runtime turn that plan into an
execution that is fast and predictable on real machines. You gain portability, you gain
performance, and you gain a common language between engineers and researchers.

Micro checklist for graph ready work
▪ Preprocessing and metrics belong in the graph when possible
▪ Control flow is explicit, not hidden in outer scripts
▪ Seeds, shapes, and dtypes are recorded for reproducibility
▪ Subgraphs are modular so teams can reuse and swap them
▪ The optimized graph is inspected like code

If graphs make complex systems visible, LabVIEW proved it decades ago by turning dataflow
into an everyday tool for engineers. Let us rewind to see why that matters now.

9

Back to the 80s, NI and the birth of LabVIEW

Picture the mid-Eighties. Personal computers get a proper graphical interface. Engineers
want instruments to talk to software without wrestling with arcane drivers. National
Instruments sells the boards and sees the gap.
In Austin, three engineers, James Truchard, Jeff
Kodosky, and Bill Nowlin, have already founded
National Instruments in 1976 with a simple
focus: connect instruments to computers so
that scientists and engineers can get results
faster. Early products revolve around GPIB and
measurement cards, yet the deeper ambition is
to make the computer feel like an instrument
that you can compose and recompose at will.

Jeff Kodosky has a simple question
that sounds audacious in that
context. What if programming for
measurement and control looked
like drawing a circuit that runs?

LabVIEW is the answer. The front
panel is where you place knobs,
charts, and indicators. The block
diagram is where you wire boxes that
do work. Data flows along wires and
triggers execution when inputs are
ready. The result feels like an

oscilloscope pointed at your own
program. You click run and watch

values ripple through the graph in real time. You correct mistakes by looking, not guessing.

As LabVIEW made dataflow tangible, NI solved the other half of the problem with a unified
driver stack: NI-DAQmx. Instead of coding per-board quirks, engineers declared what
they wanted, sample clock, channel list, trigger, buffer size and DAQmx handled how to
talk to multiplexed ADCs, counters, timers and DMA behind the scenes. Critically, the
DAQmx task model mapped cleanly to LabVIEW’s block diagram: configure once, start,
read/write, stop, with deterministic timing and good diagnostics. That pairing “visual
dataflow + a portable hardware abstraction” is the historical proof that orchestration and
I/O can live in one mental model. GO HW borrows that lesson: keep the graph as the plan,
keep a clean runtime, and expose hardware primitives as first-class nodes instead of ad-
hoc glue.

Control is part of the picture from day one. If, For, and While sit beside math nodes and
filters. They let you express choices, loops, and orderly repetition with the same visual

James Truchard, Jeff Kodosky and Bill Nowlin James Truchard, Jeff Kodosky and Bill Nowlin

LabVIEW While Loop abstraction within it’s diagram IDE

10

clarity. The idea is not to hide complexity. The idea is to make it visible so teams can
reason about behavior, timing, and state without reading a wall of text.

Why does this matter to our story about ONNX. Because it proves that graphs are a
practical way to build and operate complex systems. It shows that an IDE can help non-
specialists work confidently with powerful machinery when the model of computation
matches how they think. It also shows that orchestration is not a footnote. It is the method
that turns a collection of operations into a working system.

LabVIEW in one minute
▪ 1986
▪ Pioneered the industrial application of graph computing through LabVIEW Visual

dataflow, not syntax rules
▪ Two synchronized views, front panel and block diagram
▪ Live execution, you can watch and debug
▪ Control structures that make behavior explicit

That same clarity is what we wanted for modern AI workflows, which led to our first toolkit
and the lessons that shaped the pivot.

Graiphic chapter 1 — A Keras style toolkit that hit two walls

HAIBAL (2022), Our first LabVIEW deep learning toolkit spoke fluent Keras. It offered
layers you could stack, an H5 file you could save, and a clean mental model that many
engineers already knew. That choice made adoption easy, yet it hid a mismatch. Keras
layers are friendly abstractions, while ONNX and modern runtimes reason in finer grained
nodes. PyTorch and TensorFlow can export models as operator level graphs. Our layer
centric design could not round trip neatly with that world. Converters had to guess how a
stack of layers mapped to a set of low-level ops. Small gaps turned into friction.

The second wall was speed. We executed through the LabVIEW runtime with a light
CUDA bridge. It worked and it was ergonomic, but it was not built for the scale and
cadence of tensor compute. The hot path did too many small calls. Memory moved more
than it should. Kernels could not fuse across the layer boundaries we had chosen. When
we compared common models with mainstream frameworks, we saw the gap in latency
and throughput.

Both walls taught the same lesson. The file format and the execution engine must sit at
the center. An editor that feels good is not enough if the artifact is not native to the
ecosystem you target. A runtime that feels integrated is not enough if it cannot plan whole
graphs and keep the hot path tight. We needed to keep the ergonomics of layers for
engineers, open the door to node level editing for researchers, and anchor the truth in an
ONNX file that any tool could read.

11

What we kept and what we changed
• Kept the clarity of layers for quick prototyping
• Added node level access for custom research work
• Replaced H5 as the primary artifact with ONNX as the single source of truth
• Moved execution from the LabVIEW runtime to an engine built for graphs

Graiphic chapter 2 — one file, one engine, one cockpit

Editors change, hardware changes, teams change. The artifact stays the same and the
engine keeps it honest.

We support two lanes without splitting the road. In layer mode an engineer builds with
friendly blocks that feel like Keras. In node mode a researcher edits fine grained operators
and custom subgraphs. Both lanes write to the same ONNX graph, with the same shapes,
the same weights, the same metadata. You can start in layers for speed, drop to nodes for
precision, and never leave the file that ships.

Performance stops being an accident and becomes a property of the build. ONNX
Runtime compiles the graph into a session, fuses compatible chains, allocates memory
arenas, and plans formats so tensors do not bounce around. You call the session many
times with the same inputs, and the hot path stays tight. Latency becomes predictable,
throughput scales, energy stops leaking into copies you did not ask for.

The day-to-day experience improves too. The ONNX file is versioned like code. Diffs are
meaningful because the graph is declarative. Tests can run on a CPU provider during
development and switch to an accelerator provider in staging with the same logical
behavior. When something regresses, you inspect the optimized graph and see what
changed rather than guess which script drifted.

Graiphic did not approach ONNX as a fixed standard limited to AI inference. From the
beginning, we considered ONNX as a foundation for a broader category of graph-based
execution systems. This perspective led to a series of structured extensions and
contributions that progressively expanded the ONNX Runtime ecosystem.

12

The first breakthrough was the integration of training workflows directly into ONNX
graphs. Through our internal platform SOTA, we demonstrated that neural network
training, including backpropagation, could be described and executed within ONNX
Runtime. This eliminated the need for Python training loops or external scripting, proving
that ONNX could support dynamic learning operations rather than being limited to static
inference.

Building on this foundation, we introduced ONNX GO, a framework for Graph
Orchestration. ONNX GO extended the ONNX specification with control flow constructs
such as conditional branching (If), iteration (Loop), and structured scans (Scan). These
additions allowed ONNX graphs to express general-purpose logic, including decision
trees, processing pipelines, and reactive system behaviors.

To make these capabilities accessible, we integrated ONNX GO into LabVIEW, creating a
visual environment for graph composition and execution. Engineers could now design,
modify, and run ONNX-based systems across various platforms using a graphical
interface that supports modularity, clarity, and live debugging.

This progression from inference, to training, to full orchestration laid the groundwork for
the next step. ONNX GO HW emerged as a natural extension, introducing hardware-level
access as a native part of ONNX graphs. It completes the transformation of ONNX into a
universal execution layer capable of describing both software logic and physical
hardware control in a single, portable format.

ONNX Evolution: From AI Inference to Full Graph-Based System Orchestration

13

 A small quality of life loop closes the circle. Import a legacy model, normalize it to a clean ONNX graph, run quick shape checks, auto
generate minimal docs from operator metadata, and compile a warm session for your target. The file becomes the contract. The runtime
becomes the guarantee.

Rules of engagement
• One ONNX bundle is the source of truth for models and transforms
• Treat layer mode as a convenience, not a trap
• Keep pre and post processing in the graph when possible
• Inspect the optimized graph like you review code
• Compile once per target for stable memory and timing

The editor reads left to right. In the purple area “Model definition” you build the ONNX graph with blocks (Inputs, Dense, Add, Output) and
keep a clean ONNX artifact. In the blue area “Model Execution” you open an ONNX Runtime session from that model, inject batched
inputs, run the forward pass, and collect the outputs. The same ONNX file drives both validation and execution; only the view changes
from authoring to running.

Graiphic choice - LabVIEW ONNX
editor: from model definition to
runtime execution (Diagram view)

14

Graphs made complex systems visible. The next step is to let the same graph do more
than predict. From inference to training and orchestration, it is still a graph.

From inference to training and
orchestration, still a graph

We keep one artifact, the ONNX graph, and we
teach it new moves. Conceptually a training graph
adds a loss, gradients, and an optimizer to the
forward path. These pieces fit the ONNX mindset
and keep the artifact versionable and auditable.
They make training a plan you can read instead of a
pile of scripts.

Here is the practical nuance in our current stack.
Today the orchestration loop lives in LabVIEW, not inside the ONNX graph. LabVIEW
plays the role of If, Loop, and Scan in its own dataflow. We tick the loop, feed inputs to the
graph, run one forward pass, collect outputs, and repeat. This keeps high level control
familiar and debuggable while we gradually move schedule logic into ONNX when it is
mature enough. The diagrams you shared show this clearly. The model is defined once, a
session is created, and LabVIEW drives the sequence one inference at a time.

We support three session flavors in ONNX Runtime so teams choose the right granularity
without changing tools:

▪ Inference session Classic forward only. Use for serving and evaluation.
▪ Training session in fit mode (green wires) Forward, loss, backward, and update

handled as a single callable.
▪ Academic session Forward and backward are exposed separately so you can inspect

tensors, plug custom losses, or prototype research ideas.

This hybrid phase is intentional. It delivers
value now and sets a clean path to full in graph
orchestration later. You already get compiled
sessions, fused kernels, and stable memory
on each target. You already keep
preprocessing and metrics close to the model
so runs are reproducible. You already ship a
single ONNX file that moves from experiment

to evaluation to serving. What changes next is where the schedule lives. We will gradually

LabVIEW Diagram Orchestration of ONNX
Runtime Training Inference

LabVIEW Training Inference functionality

LabVIEW ONNX editor: Palette

15

encode epoch loops, mini batch steps, and early stopping with ONNX control flow so the
artifact carries both computation and cadence.

Micro callout
▪ Today: LabVIEW owns the loop and calls ONNX Runtime each tick
▪ Tomorrow: control flow migrates into ONNX using If, Loop, and Scan
▪ Always: one ONNX file, one compiled session per target, the same truth in every

phase

The NI Connect moment

We arrived at NI Connect with one story to tell. A clean LabVIEW experience on top of
ONNX and ONNX Runtime for deep learning, with the orchestration loop living in
LabVIEW. The first discussion with NI engineers changed the scope in the best possible
way. If the graph can express complex deep learning, it can also express simpler building
blocks from the LabVIEW palette. That idea kicked off the Accelerator Toolkit. The goal
was straightforward. Generalize ONNX beyond deep learning and use ONNX Runtime to
execute any compute graph efficiently.

Results followed quickly. A matrix multiplication benchmark on CPU showed the
Accelerator beating native LabVIEW by a wide margin. At size 8000 the time ratio reached
about 5.5 in our test VI, with ten iterations per size for fair timing. The same pattern
appeared in computer vision. A Sobel edge detector built as an ONNX graph and run with
ONNX Runtime outpaced an OpenCV implementation by roughly 30 to 40 percent
depending on resolution. These two measurements gave us confidence that the
generalized graph route was sound. The videos and screenshots we shared with NI
captured the effect clearly.

The second moment came the next day with an NI engineer who had missed the first
meeting. Your idea to generalize graphs is good, he said, but how do you control hardware
signals with this technology. The question landed and stayed. It reframed the problem
from pure acceleration to timing and alignment with the real world.

The timeline matters. In May we had only the deep learning toolkit and a LabVIEW driven
loop that fed the graph and called ONNX Runtime step by step. In July we shipped the
Accelerator Toolkit to prove that generalized graphs run fast for pre and post processing
and for standalone math. In August we began shaping the hardware path. The order is

Comparison between OpenCV and ONNX runtime time execution performance on Sobel Edge
Detector on an CPU execution provider (ORT : ONNX Runtime)

16

deliberate. Show speed first, then bring timing into focus, then extend the model to the
physical layer. Step by step.

Two ideas were born in those conversations with NI. First, treat ONNX as a general
graph that can execute efficiently beyond deep learning. Second, answer the hardware
question with a design that makes timing and control as explicit as the math. The first idea
is already in the product. The second is the seed we are growing now.

Generalizing the graph is only half the story. To act on the physical world, we need to speak
the language of chips. A short tour of SoCs makes the stakes concrete.

SoC basics without the jargon

A System on Chip is a small city
on a slice of silicon. You get a
CPU for general work, a GPU or
NPU for heavy math, memory
blocks, and the streets that
connect them called buses.
Around that city sit the ports that
touch the world. General purpose
pins switch lights or read buttons.
Converters turn voltages into
numbers and back. Timers keep
time. Interrupts wake the city
when something important
happens. Put it together and you
have a computer that can sense,
think, and act on its own.

Think in three layers. At the edge
are signals you can touch. GPIO

flips digital inputs and outputs. ADC reads analog values like pressure or vibration. DAC
writes analog values like a reference voltage. PWM creates precise pulses for motors and
LEDs. Timers and counters measure durations and frequencies. Interrupts say stop what
you are doing and look here. In the middle is data movement. Direct Memory Access
moves blocks of data without bothering the CPU. Small shared buffers act like mailboxes
between parts of the chip. At the core sits compute. The CPU runs control logic. The GPU
or NPU crunches arrays for vision or language. Caches and formats decide how fast the
math flows.

System on Chip (SOC) high level design

17

Why does this matter for graphs. Because an ONNX graph can run where the signals
originate. A camera feeds a stream into memory.
DMA places frames without copies. The runtime
reads tensors in place. The decision lands while the
belt still moves. Latency drops because you do not
ship data across a network. Energy drops because
you do not spin big servers for tiny decisions.
Portability holds because the same graph can
target different SoCs through different providers
while keeping the same logic.

Two pictures make it concrete. In a bottling line a
tiny board watches caps and fills. A sensor fires, a frame arrives, a model checks the
meniscus, and a reject arm nudges a faulty bottle. The action happens in tens of
milliseconds. In a smart street cabinet a board reads weather and traffic sensors, adjusts
timing for a crossing, and reports summaries every minute. No one babysits the box. The
graph is the script and the chip runs the play.

Keep a simple mental kit for SoCs.
• Signals: GPIO, ADC, DAC, PWM, timers, interrupts
• Movement: DMA, shared buffers, ring queues
• Compute: CPU for logic, GPU or NPU for arrays
• Wins: low latency, low energy, same logic on many boards

State of the Art in Graph Computing and Hardware
Orchestration (2021–2025)

Introduction
Graph-based computing has become a cornerstone of modern AI systems. Neural
networks are naturally expressed as computational graphs where nodes represent
operations and edges represent data flows (tensors). Beyond model inference, many AI
workflows – from sensor acquisition to decision-making and actuation – can be
modeled as dataflow graphs or directed acyclic graphs (DAGs). Representing workflows
in this form enables global optimization, reproducibility, parallelism, and a unified view
of the system.

Between 2021 and 2025, major advances have been made in graph compilers,
distributed DAG schedulers, hardware-specific runtimes, and pipeline orchestrators.
Yet, none of the existing approaches fully unifies AI computation, orchestration logic,
and hardware I/O under a single portable artifact. This section surveys key academic
and industrial efforts and highlights the gap that motivates the development of ONNX
GO HW.

Nvidia Jetson Orin SOC

18

Graph Compilers and Runtimes
Modern compilers and runtimes transform computation graphs into optimized
executables tailored to each hardware target.

• ONNX Runtime (ORT) – A cross-platform engine for executing ONNX graphs with
kernel fusion, memory planning, and multiple Execution Providers (CUDA,
TensorRT, oneDNN, DirectML, OpenVINO, etc.). Widely used in production for
portability and performance.

• Apache TVM – An open-source compiler stack applying graph-level and tensor-
level optimizations, including auto-scheduling (Ansor). Supports CPUs, GPUs,
microcontrollers, and custom ASICs.

• Google XLA / MLIR – A compiler infrastructure generating optimized HLO IR for
CPUs, GPUs, and TPUs, excelling at static graph optimizations.

• NVIDIA TensorRT – A high-performance runtime for NVIDIA GPUs, focused on
inference, with aggressive optimizations (layer fusion, quantization).

• Meta Glow – A graph-lowering compiler producing optimized code for
heterogeneous devices, though with declining adoption compared to ORT/TVM.

Strength: excellent inference performance.
Limitation: focus on neural nets only; pre/post-processing, control flow, and hardware
orchestration remain external.

Pipeline Orchestration Frameworks
Some frameworks address end-to-end workflows by connecting models with other
processing nodes.

• NVIDIA Triton Inference Server – Supports ensembles of models connected as
DAGs, with batching and scheduling. Optimized for serving at scale, not
embedded control.

• NVIDIA Holoscan (GXF) – Graph Execution Framework for real-time sensor/AI
pipelines on Jetson/Orin. Provides zero-copy buffers and deterministic
scheduling, but mainly tied to NVIDIA hardware.

• NVIDIA DeepStream – A graph-driven multimedia pipeline framework based on
GStreamer, targeting video analytics.

• ROS 2 – Widely used in robotics, representing systems as graphs of nodes
communicating via DDS. Strong for modularity, but determinism and real-time
guarantees remain challenging.

• LabVIEW – The precursor of visual graph-based programming, with native
support for control and I/O. Historically limited by dependence on proprietary
runtimes and lack of AI-native integration.

19

Strength: integration of multiple components (sensing, AI, control).
Limitation: models are often treated as black boxes; no unified graph artifact combining
AI and I/O.

Hardware-Specific SDKs and DSLs
Vendors have created specialized graph-oriented SDKs to maximize performance on
their chips.

• AMD Vitis AI – Compiles models into FPGA DPUs, enabling efficient inference
with quantization.

• Xilinx Adaptive Dataflow (ADF) – DSL for programming Versal AI Engines as
graphs of kernels and streams.

• Qualcomm QNN SDK – Constructs hardware-specific graphs for Snapdragon
SoCs, mapping to DSPs, NPUs, and GPUs.

• NVIDIA CUDA Graphs – API to reduce GPU kernel launch overhead by chaining
kernels as graphs.

• Intel oneAPI / OpenVINO – Graph IRs optimized for Intel CPUs, GPUs, and VPUs.
Strength: hardware efficiency, near-ASIC performance.
Limitation: vendor lock-in; portability and orchestration across vendors not supported.

Limitations of the Current State of the Art
Despite the breadth of solutions, several gaps remain:

1. Fragmentation – Inference engines, orchestrators, and hardware SDKs remain
siloed, requiring glue code.

2. No unified artifact – AI models, control loops, and I/O logic are spread across
different runtimes.

3. Vendor lock-in – Each hardware vendor exposes its own graph DSL, reducing
portability.

4. Lack of determinism – Few frameworks address real-time guarantees, safety
profiles, or certifiability for aerospace/automotive/defense.

Transition to GO HW
These gaps open the path for ONNX GO HW:

• One graph artifact (ONNX) for computation, orchestration, and I/O.
• One runtime engine (ONNX Runtime) that schedules both math and hardware

nodes.
• One cockpit (LabVIEW-style IDE) to author, configure, deploy, and monitor.

This unified approach is portable across vendors, auditable for safety-critical domains,
and efficient for embedded deployment.

20

Comparative Snapshot
Framework

/ SDK AI Models Control Flow Hardware I/O Portability Real-Time / Safety

ONNX
Runtime Yes Limited

(If/Loop) No High Partial (fallbacks)

Apache TVM Yes No No High No
TensorRT Yes (GPU) No No NVIDIA-only No

ROS 2 Yes (as external
node) Yes Yes (via drivers) High Limited determinism

Holoscan /
DeepStream Yes Partial Yes (streams) NVIDIA-only Some deterministic

scheduling
Vitis AI /
QNN / ADF

Yes No Partial Vendor-only Limited

GO HW
(proposed) Yes Yes

(If/Loop/Scan)
Yes (GPIO, DMA,
ADC/DAC, PWM)

High (via Execution
Providers) Yes

Closing Sentence
The fragmentation of today’s tools highlights the need for a unified solution. This gap
motivates GO HW, a concrete path from static description to dynamic technology.

GO HW, a concrete path from static description to
dynamic technology
GO HW stands for Graph Orchestration for Hardware. It turns a single ONNX graph into
a living control loop that runs on real chips. The artifact stays ONNX. The engine stays
ONNX Runtime. The cockpit stays LabVIEW. What changes is that hardware primitives
become first-class nodes and timing becomes part of the plan.

Take the thought experiment and give it a name. GO HW is our way to turn ONNX from
a static file into a living plan. ONNX stays the language that describes the graph. ONNX
Runtime stays the engine that compiles and executes the plan. LabVIEW stays the cockpit
where people think in graphs. GO is the glue that makes schedules, policies, and lifecycle
first class citizens inside the same artifact.

The change is simple to feel. Instead of juggling scripts and private formats, teams keep
one ONNX bundle that carries model structure, training logic when needed, evaluation
flows, and housekeeping such as metrics and checkpoints. The runtime sees the whole
plan, fuses what it can, sizes memory once, and delivers a session that behaves the same
every time you call it. Reviews become graph diffs. Tests become graph runs. Rollbacks
become file swaps.

We do not invent a new file or a new engine. We make better use of what exists.
Control flow nodes like If, Loop, and Scan are not extras for edge cases. They are the
handles that let you encode learning loops, curriculum choices, early stopping, and

21

reporting without leaving the ONNX world. The result is a clean pipeline that is portable,
auditable, and friendly to both engineers and researchers.

Ergonomics remains a first-class concern. Layer mode gives practitioners the speed of
Keras style building blocks. Node mode gives researchers fine control at the operator
level. Both write to the same ONNX graph. Both compile to the same session. Both benefit
from the same runtime optimizations. Your team chooses the view. The artifact stays one.

Three promises of GO HW
• One artifact for the lifecycle
• One engine for performance and portability
• One cockpit that makes graphs natural to author and reason about

GO HW on SoCs, author, configure, deploy, monitor

Think of GO HW as a four-step groove. You author a graph, you configure a target, you
deploy a compiled plan, you monitor the run. Same artifact, same engine, different
boards.

Author. Build the model as an ONNX graph in the LabVIEW cockpit. Engineers use layer
blocks when they want speed. Researchers switch to node level when they want
precision. Pre and post processing live in the same graph when it makes sense. Shapes,
dtypes, and opset are checked early so the file is clean before you touch hardware.

Configure. Pick a board and load its device profile. The profile describes memory,
supported providers, and practical limits such as how many concurrent streams make
sense. The tool suggests a partitioning plan across providers. You confirm what runs on
CPU, what runs on GPU or NPU, and what the Hardware EP will bind when hardware
primitives are present. One click produces a plan you can review.

Deploy. ONNX Runtime compiles the graph into a session for that SoC. Kernels that fit
together are fused. Memory arenas are sized to avoid hot path allocations. Formats are
aligned so tensors do not ping pong between layouts. You ship a compact bundle that
contains the graph, the compiled artifacts, and a small manifest. The device starts the
session and keeps it resident.

Monitor. A tiny agent speaks gRPC for a side channel. Operators can read metrics, watch
a few tensor taps, and adjust whitelisted parameters without touching the hot path. The
session keeps its timing and memory stable. The agent handles logs, health checks, and
safe restarts. You can stage a new graph, switch over, and roll back with short commands.

22

Here is a simple way to keep the loop healthy.

Happy path checklist
• Validate shapes and opset at author time
• Compile once per target and reuse the session
• Keep preprocessing and metrics in the graph when practical
• Track versions with a clean semantic tag and a short changelog
• Warm up the session after boot and record a baseline

A small example makes it real. A sorter runs on a Jetson today and moves to a Zynq board
next quarter. You do not rewrite the logic. You open the same ONNX file, select a different
device profile, compile for the new target, and deploy. ONNX Runtime picks the right
providers. The agent reports the same metrics. Operations do not learn a new tool. They
keep their eyes on the same cockpit.

The model graph authored on the development PC is encapsulated as a subgraph within
a larger control graph, wrapped in a Loop (while) node with a configurable cadence and
an exit condition set in the editor.

On the Development PC you work in the ONNX editor inside LabVIEW. You author the
graph as model.onnx, pick a device_profile.yaml for the target, then compile to a
session.bundle. The bundle contains the optimized graph, the chosen Execution
Providers, and the I O bindings the runtime will use. You deploy this bundle to the SoC
over SSH or HTTP or SCP.

First functional architecture for GO HW

23

On the SoC target the data plane runs an ONNX Runtime session. Execution Providers
accelerate subgraphs on the available engines. A Hardware EP exposes GPIO, ADC and
DAC, PWM, timers and DMA as graph accessible services. I/O binding connects device or
pinned buffers to inputs and outputs so tensors move without extra copies. Beside the
data plane sits the control plane. It keeps a small ControlTable for parameters like stop,
mode and threshold, an Indicators set for states like latency and fps, and a gRPC agent
that exposes these knobs. The control plane never blocks the hot path. DMA is kept for
large streams such as camera or audio, while small controls use local registers.

On the Control PC the Monitoring and Control UI speaks four simple verbs over gRPC
with TLS. SetControl and GetIndicator write and read small parameters and states.
PushTensor and PullTensor send or fetch small tensors through named bindings, useful
for calibration or checks. GetSessionManifest returns a JSON snapshot of the active
session with providers, partitions and I O bindings so you can inspect what runs where.
HotSwapModel replaces the active bundle after validation and warmup, and Rollback
restores the previous one if a health check fails.

This layout keeps one artifact, one engine and one cockpit. Today the LabVIEW loop still
drives the session tick by tick, which makes debugging simple. Next we bring more
schedule into the graph with If, Loop and Scan while keeping the same planes, the same
API and the same zero copy path.

Proposed hardware nodes (first wave)

▪ sys.ControlGet(name) → read a small scalar/vector from the ControlTable (e.g.,
threshold, mode, stop).

▪ sys.IndicatorSet(name, value) → publish metrics/states (latency_ms, fps,
temperatures).

▪ sys.Clock(period | source) → provide ticks or timestamps to cadence a Loop.
▪ sys.TriggerIn(source) → edge or level trigger from external signal or timer.
▪ sys.Delay(ms | cycles) → bounded delay inside a control subgraph.
▪ sys.MetricTap(tensor, rate) → sample a tensor safely for monitoring without

perturbing the hot path.
▪ sys.Watchdog(timeout_ms, safe_action) → enforce a safe state if timing budgets

are missed.
▪ sys.SafeState(action) → explicit fallback action (e.g., de-energize outputs).
▪ hw.GPIOIn(pin) → boolean/u8 input; debouncing as attribute.
▪ hw.GPIOOut(pin, value) → digital output with optional pulse attributes.
▪ hw.ADCIn(chan, shape) → acquire analog samples into a tensor; sampling rate as

attribute.
▪ hw.DACOut(chan, value) → write analog value; optional slew/limits.
▪ hw.PWMOut(chan, duty, freq) → generate PWM; jitter and range as attributes.

24

▪ hw.RTFifoDequeue(name) / hw.RTFifoEnqueue(name, tensor) → bounded real-
time queues for small deterministic streams.

▪ hw.DMARead(channel, bytes|shape) → zero-copy intake from device to tensor
(camera, ADC DMA).

▪ hw.DMAWrite(channel, tensor) → zero-copy out to device.
Binding rules. Controls/Indicators live in local RAM (small scalars). RT-FIFO for small
deterministic streams. DMA is reserved for large flows. All bindings are named handles
(no raw pointers) and appear in the session manifest.

Once a graph touches real pins, safety and evidence stop being optional. We introduce
observability and device profiles so teams can trust what runs and prove it.

Energy-Aware Graphs and Forensic Monitoring
A missing cornerstone of today’s AI deployment is energy. Performance metrics such as
latency and accuracy dominate the discussion, yet energy – the joules consumed per
inference or training step – remains invisible. GO HW enables users to explicitly elevate
energy as a scientific, reproducible metric inside graph orchestration. Models can thus
be evaluated not only for their predictions, but also for their execution cost, with energy
becoming part of the same first-order evidence as accuracy or latency.

GO HW extends the monitoring plane with energy measurement. Each Execution Provider
can expose an optional Energy Provider API to start and stop sampling during graph
execution. Readings from hardware counters (e.g. NVML/PCAT for NVIDIA GPUs, RAPL for
Intel CPUs, INA3221 for Jetson SoCs, PMBus for FPGA boards) are collected and
normalized into joules per run. While these sources provide useful indicative values, they
do not always reach forensic-level precision. To address this gap, Graiphic envisions
building dedicated test benches per hardware platform, equipped with calibrated
external instrumentation, and publishing the results openly in the same transparent
manner as its Execution Providers Tester project. This approach ensures that hardware
profiles are backed by auditable, high-precision evidence of energy consumption.

These measurements become energy semantics: annotations attached to nodes,
subgraphs, or sessions, preserved in the Session Manifest. They enable reproducibility
(same model, same joules), comparability (different boards, same metric), and
accountability (evidence for audits and certification).

Beyond monitoring, GO HW introduces a new family of loss functions where energy is
a first-class component. Users may define multi-objective optimization goals (L = α *
error + β * joules), or construct custom losses directly from measured values by wiring
hardware counter nodes into the training graph. This allows energy to be treated as a
standard optimization signal, not merely as an external log. Graph-level optimizations
such as kernel fusion, quantization, pruning, and early exit branches further reduce
consumption without altering hardware.

25

By combining indicative monitoring, forensic test benches, semantic annotation, and
energy-aware loss design, GO HW makes energy visible, actionable, and reproducible in
AI systems deployed on real hardware.

LabVIEW-native forensic measurement.

A defining advantage of Graiphic’s GO HW project is its native LabVIEW environment.
LabVIEW has long been the gold standard in test and measurement, and this DNA
translates directly into energy-aware AI orchestration. Beyond relying on low-level
counters (temperature sensors, CPU utilization, or memory load), GO HW can leverage
LabVIEW instrumentation to build rigorous test benches for each target SoC. These
benches combine calibrated DAQ hardware with reproducible orchestration scripts,
enabling precise measurements of joules consumed per model, per architecture, and per
workload.

In practice, this means that GO HW can go beyond inference from indirect indicators and
provide forensic-grade energy profiles. These results can be benchmarked systematically
across Raspberry Pi, Jetson, Zynq, i.MX and industrial IPCs, then published openly on
Graiphic’s GitHub as reference datasets. By doing so, Graiphic not only monitors energy
but sets a reproducible standard for the entire community, where performance is always
reported together with energy consumption. This approach ensures transparency,
comparability, and long-term credibility, aligning with DARPA’s ambition to make energy a
first-class scientific metric in machine learning.

Open benchmarking and transparent culture.

A key part of Graiphic’s DNA is a culture of transparency and open collaboration. We
systematically publish our benchmarks and tools on GitHub, not only to demonstrate
capability but also to provide the community with actionable insights. A representative
example is the Execution Providers Tester, an open-source initiative that systematically
maps ONNX Runtime operator coverage across all Execution Providers. This project,
maintained as part of SOTA, has become a reference point for developers and vendors to
understand backend support, prioritize missing operators, and track reproducibility
across environments.

We apply the same philosophy to energy. With GO HW, our goal is to build and publish
forensic-grade energy benchmarks per SoC, validated with LabVIEW-native test benches
and external instrumentation. These results will be openly shared on Graiphic’s GitHub,
in the same transparent manner as our operator coverage tester. By doing so, Graiphic not
only demonstrates mastery of the entire ONNX stack, from operators to orchestration to
hardware execution, but also provides the ecosystem with clear, reproducible metrics
and actionable objectives. This open benchmarking culture ensures trust, comparability,
and alignment with DARPA’s emphasis on scientific rigor.

https://github.com/Graiphic/ONNX-Runtime/tree/main/Execution%20Providers%20Tester

26

Algorithmic Enhancements: Dynamic Loss Functions and Informed
Learning through Full Graph Orchestration

Dynamic, energy-aware loss design.

Unlike conventional frameworks where loss functions are hard coded into the training
loop, GO HW, built on Graiphic’s SOTA orchestration layer, treats the loss as a first-class
graph component. This enables the injection of dynamic loss subgraphs at runtime,
blending traditional accuracy-driven objectives with hardware-derived energy metrics
exposed via new HW nodes such as GPIO, DMA, timers, ADC/DAC, and power counters.
Losses can therefore explicitly minimize both prediction error and joules consumed. For
example: L = α × error + β × energy

This capability is unique. SOTA is currently the only framework that can dynamically
orchestrate and reconfigure such hybrid objectives directly inside the ONNX graph,
making energy optimization a native part of the training loop rather than an afterthought.

Graph-compilation efficiency as orchestration property.

GO HW leverages ONNX Runtime Execution Providers, which means that every graph
passes through optimization pipelines where redundant operations are removed and
compatible nodes are fused into efficient kernels. What differentiates Graiphic’s
approach is that these compiler-level passes are orchestrated, inspected, and controlled
at the graph level. Energy gains are no longer incidental side effects of compilation; they
are visible, reproducible orchestration choices. Only a framework with full graph mastery
such as SOTA can expose and standardize this capability.

Integration of alternative learning paradigms.

Through its orchestration-first architecture, GO HW seamlessly integrates self-
supervised and informed learning approaches as native graph constructs. In self-
supervised learning, contrastive vision methods such as SimCLR have exceeded
supervised ImageNet performance with 100 times fewer labels, while in NLP masked
token prediction achieves state-of-the-art results with minimal annotation. In informed
learning, domain constraints and physical laws are encoded directly into the optimization
graph. Zhang et al. (2021) demonstrated that an elastic-energy-constrained network
matched supervised accuracy without ground-truth data. In computational fluid
dynamics, informed networks reproduced full simulations approximately 60 times faster
than FEM or FVM solvers. In structural engineering, PINNs incorporating conservation
laws provided more precise stress predictions while reducing computational cost. These
paradigms converge faster, require fewer epochs, and consume significantly less energy.
With GO HW’s orchestration layer, they become deployable as graph-native strategies
rather than external workarounds.

27

Impact: Green AI by design.

By uniting dynamic energy-aware losses, orchestrated compiler optimizations, and alternative ML paradigms, GO HW transforms energy
from a passive metric into an active design variable. This positions Graiphic’s SOTA as the only fully orchestrated graph framework able to
embed energy directly into learning, ensuring AI systems that are not only accurate but also efficient, reproducible, and sustainable.

Energy-aware contributions of SOTA and GO HW

Category SOTA contributions GO HW contributions

Prevention
(reduce energy
upfront)

▪ Graph orchestration allows dynamic injection of energy-aware loss
functions.

▪ Operator fusion, pruning, quantization embedded at graph level.
▪ Support for alternative paradigms (self-supervised, informed ML)

reducing training epochs and data labeling effort.
▪ Training orchestration inside ONNX graphs (loss, optimizer, control

flow) avoids scattered scripts, ensuring leaner execution.

▪ Hardware primitives (GPIO, DMA, timers, ADC/DAC) exposed as
nodes, enabling energy-aware design directly tied to SoC resources.

▪ Cross-hardware portability (CPU, GPU, FPGA, SoC) allows selecting
the most energy-efficient target.

▪ Automatic graph compilation with kernel fusion and memory planning
across Execution Providers to reduce wasted cycles.

Monitoring
(measure and
expose energy)

▪ Native LabVIEW environment provides intrinsic test & measurement
DNA.

▪ Session manifests and metrics are integrated into orchestration
layers for reproducible runs.

▪ Early monitoring hooks for latency, memory, and resource usage.

▪ Forensic-grade energy monitoring via Execution Providers extended
with Energy Provider APIs (NVML, RAPL, INA3221, PMBus).

▪ Dedicated LabVIEW test benches with calibrated DAQ for per-SoC
joule measurement.

▪ Energy semantics preserved as annotations in Session Manifest.
▪ Open GitHub culture: publishing per-model/per-architecture

benchmarks for transparency (e.g. Execution Providers Tester
precedent).

Curation
(optimize after
deployment)

▪ Ability to re-train or fine-tune models by dynamically adjusting losses
including energy terms.

▪ Graph-level rewrites (kernel fusion, pruning, early exits) as corrective
strategies.

▪ Switch between inference/training/academic sessions for flexible
post-hoc tuning.

▪ Migration of trained models across hardware (GPU → FPGA/SoC) to
achieve better energy/performance trade-offs.

▪ Hot-swap and rollback mechanisms in deployed sessions without
breaking timing or safety constraints.

▪ Multi-objective optimization functions (error + joules) guiding iterative
refinement of deployed systems.

28

Closing, one graph, many roles

The path is simple to state. Keep one artifact. Let it describe models, training schedules,
and workflows. Run it with one engine across many devices. Give people a cockpit that
feels natural. This is how ONNX, ONNX Runtime, and the LabVIEW experience come
together in GO HW.

What changes for teams is focus. You spend less time stitching scripts and more time
shaping graphs. You review optimized graphs like code. You move the same file from
experiment to evaluation to deployment. You target a workstation, a Jetson, a Zynq, or a
PC, and the logic stays the same. You gain speed because the runtime plans the work.
You gain trust because the plan is visible.

What changes for the ecosystem is reach. A native ONNX editor removes the
dependency on third party export paths. Control flow nodes become everyday tools
instead of hidden features. The SONNX safety profile gives sensitive sectors a clear
contract for meaning and evidence. ONNX grows from an excellent file format to a
complete graph computing framework that spans learning, serving, and control.

29

Implementation and Deployment of ONNX GO HW on SoCs (Raspberry Pi 5 as First
Case Study)

 The implementation of ONNX GO HW
follows a structured workflow, moving
from operator specification to
deployment and monitoring on real
SoCs. We start with the Raspberry Pi 5
(Figure 0) as the initial demonstrator.
Based on the Broadcom BCM2712, this
board provides a rich set of interfaces
(USB, Ethernet, GPIO, PCIe, etc.), making
it an ideal target to define and validate
the initial architecture.

30

On the development side, three core artifacts are essential:

• model.onnx: the graph definition, representing the universal contract.
• device_profile.yaml: the SoC “identity card,” describing available resources (CPU, GPU/NPU, memory, I/O) and constraints.
• session.bundle: the optimized execution package ready for deployment on the target.

These artifacts build on existing ONNX / ONNX Runtime mechanisms, ensuring interoperability and standardization.

31

A first proof-of-concept is already visible in the LabVIEW Graiphic IDE, which demonstrates that custom development environments can
be constructed directly from the open-source ONNX toolchain. This highlights the possibility for third-party IDEs to leverage the same
functional core.

32

The development workflow can be divided into two categories:

1. Already defined by ONNX (graph compilation, operator schemas, execution management).
2. To be specified (hardware node encapsulation, standardized SoC profiles).

At deployment time, two execution scenarios are possible:

• Cross-Compilation: the graph is compiled on the development PC using
the target profile, producing an optimized session.bundle that is transferred to
the SoC. Advantage: simulation can be performed before deployment.

• In-situ Compilation: the PC sends the model and profile, and ONNX
Runtime compiles directly on the SoC, adapting natively to available hardware
resources.

Once deployed, the architecture runs inside the SoC execution environment
(Figure 5):

• Data Plane: ONNX Runtime session extended with Hardware Execution
Providers (GPIO, ADC/DAC, PWM, DMA, etc.), using optimized memory
bindings for zero-copy execution.
• Control Plane: runtime configuration via a control table (start/stop,
thresholds, modes), performance indicators (latency, FPS, metrics), and a
gRPC-based agent ensuring monitoring, remote access, and execution safety.

33

Finally, the supervision layer establishes secure communication via gRPC TLS between the Control PC and the SoC. It exposes a
standardized set of functions: configuration and indicator retrieval, small tensor transfers, access to the session manifest (JSON), and
dynamic model lifecycle management (HotSwap/Rollback).

34

Conclusion

Demonstrating this workflow on Raspberry Pi 5 will provide the first end-to-end
validation of ONNX GO HW, proving that ONNX can orchestrate SoC-level resources
through an optional hardware namespace. From this initial feasibility study, the
experience gained will drive:

• standardization of SoC profiles and hardware nodes,
• Progressive extension to additional platforms (Jetson, Zynq, FPGA, i.MX, etc.),
• reproducibility through portable device_profile.yaml descriptions and unified

functions.
This approach ensures that each new SoC can be integrated into the ONNX GO HW
ecosystem through the addition of a profile in a shared library, guaranteeing
interoperability, portability, and long-term adoption.

Proposed Path Forward for ONNX steering committee

To ensure clarity and avoid fragmentation, we propose the creation of an experimental
optional domain under ONNX, tentatively named onnx.hardware.

• Status: The operators defined in this domain would be optional, exactly like other
ONNX operators that are not universally implemented across Execution Providers.
No vendor would be required to support them.

• Scope: Initial focus on SoC primitives such as GPIO, DMA transfers, ADC/DAC,
timers, and synchronization nodes.

• Deliverables:
1. Draft operator definitions with schemas and documentation.
2. Mapping tables to existing vendor APIs (e.g., CUDA, DAQmx, XRT,

OpenVINO, oneAPI).
3. An open-source prototype (starting with Raspberry Pi 5) demonstrating

feasibility.
• Governance: This domain would be managed under a new ONNX Hardware

Working Group, working in coordination with existing WGs (e.g., Multi-Device,
Generative AI).

• Goal: Provide a recognized namespace where hardware orchestration operators
can be incubated in a structured way, ensuring legitimacy, community visibility,
and long-term alignment with the ONNX standard.

This approach guarantees that ONNX remains lightweight at its core while providing a
credible framework for vendors and industrial adopters who wish to expose hardware-
level capabilities within ONNX graphs.

Creating a dedicated ONNX Hardware Working Group is not just an implementation
detail, it is a strategic step to ensure ONNX remains the common, extensible, and
trustworthy foundation for real-world deployment on hardware, beyond inference.

35

Why ONNX Needs a Hardware Working Group, Strategic Rationale

Creating an ONNX Hardware Working Group is not just a technical proposal. It is a
strategic move to ensure ONNX evolves with the needs of its community, expands its
scope, and maintains its leadership in the AI ecosystem. Below are eleven key reasons
why this effort is essential:

1. Expand ONNX beyond inference GO HW transforms ONNX from a simple
inference format into a full orchestration framework. This enables use cases in
control, automation, edge AI, and closed-loop systems, far beyond static
prediction tasks.

2. Meet rising demand for edge and SoC deployments Many industrial and
embedded applications require tight integration between compute and I/O. By
supporting primitives such as GPIO, DMA, ADC, and PWM, ONNX becomes
relevant for real-world deployments on low-power, timing-sensitive hardware.

3. Prevent fragmentation through standardization Without an official hardware
namespace, vendors will create their own incompatible extensions. A dedicated
working group ensures that hardware-related nodes and behaviors are defined in
a consistent, interoperable, and open way.

4. Enable portability and reproducibility across devices With standardized
hardware nodes and profiles, the same ONNX graph can be deployed to a
Raspberry Pi, Jetson, or Zynq board without rewriting logic. This simplifies testing,
integration, and reuse across heterogeneous targets.

5. Support safety-critical applications with auditability and trust A hardware
domain aligned with the SONNX Safety Profile enables certification and
traceability in regulated sectors such as aerospace, defense, healthcare, and
automotive. This elevates ONNX from an experimental tool to a trusted platform.

6. Support real-time orchestration and deterministic control ONNX already
includes control-flow nodes like Loop, If, and Scan. Combined with hardware-
timed operations, these allow ONNX graphs to express scheduling, triggering, and
timing constraints essential for modern automation and robotics.

7. Anchor long-term evolution with clear governance A working group provides
legitimacy, shared ownership, and a structured path for future development. It
ensures that hardware orchestration capabilities evolve under community
guidance and remain aligned with the ONNX roadmap.

8. Evolve ONNX into a complete, standalone platform Currently, ONNX acts as an
exchange format dependent on third-party toolchains. By introducing native graph
editing and execution orchestration, ONNX can become a first-class platform for
authoring, deploying, and managing graph-based applications directly.

9. Adapt to emerging technological needs and open new domains Supporting
hardware and orchestration opens the door to new use cases in industrial AI,

36

robotics, embedded systems, and cyber-physical infrastructure. It also brings new
contributors from fields beyond machine learning, such as control engineering
and systems design.

10. Avoid losing relevance to emerging standards If ONNX does not address
hardware orchestration, another format eventually will. The demand is real and
growing. Leaving this space unaddressed creates a risk of fragmentation or
replacement, potentially rendering ONNX obsolete in key domains.

11. Demonstrate vitality and attract innovation A dynamic ecosystem attracts
researchers, engineers, and academics. Supporting this initiative sends a clear
signal that ONNX is open to innovation, collaborative, and responsive to real-world
needs. Refusing to engage could suggest stagnation or retreat, harming the long-
term health of the project.

The Artemis rover could run on ONNX. We just have to make that choice.

37

Here is a short list of actions that make the vision concrete.

Calls to action
For the ONNX community

▪ Define standard hardware nodes: hw.GPIOIn, hw.GPIOOut, hw.ADCIn,
hw.DACOut, hw.PWMOut, hw.RTFifoEnqueue/Dequeue, hw.DMARead/Write,
sys.Clock, sys.TriggerIn, sys.Delay.

▪ Grow the Safety-Related Profile (SONNX) with reference tests and a profile
interpreter
Make timing budgets, watchdogs, and safe states first-class and verifiable.

▪ Standardize a Register abstraction
Add a typed, named Register class for runtime get/set. Registers are small scalars
or short vectors declared in a Control Table, with dtype, shape, default, access
policy, update rate, and scope. Provide ONNX nodes sys.RegisterRead(name) and
sys.RegisterWrite(name, value), plus editor annotations.

▪ Standardize a Session Manifest and a Session Log
Manifest (JSON) at compile time: graph_hash, opset, providers, device_profile_id,
io_bindings, register_map (names, logical handles or offsets, types), taps,
rt_constraints.
Log (NDJSON) at runtime: timestamped events, node ids, metrics, errors, and
stable handles. No raw pointers by default; allow an explicit debug mode that
adds physical addresses for low-level bring-up.

▪ Support a native ONNX editor that covers import, edit, and create
One artifact, less glue code, better auditability.

For industry partners
▪ Publish device profiles for real boards in practical terms

GPIO counts and specs, ADC ranges and rates, FIFO and DMA sizes, memory
layout, supported providers, known timing limits.

▪ Validate a “Pi to Any SoC” reference path with public metrics
Same graph across boards, reporting p50 and p99 latency, jitter, throughput, and
energy.

▪ Ship minimal driver shims for hardware nodes and registers
Clean mappings to MMIO, sysfs, libgpiod, UIO, or char devices. Expose the
register map through the Hardware EP and the agent.

▪ Provide ready-to-flash images and sample graphs
Reproducible day-one experience.

38

For teams adopting GO HW
▪ Treat the ONNX file as the single source of truth

Version it and generate everything else from it.
▪ Keep preprocessing and metrics in the graph when practical

Improves reproducibility and portability.
▪ Compile once per target and reuse sessions for stable timing

Preallocate, warm up, and keep sessions resident.
▪ Use Registers for safe live tuning and monitoring

Clear names, bounded values, agent-side validation and ACLs. Prefer handles
over raw addresses; enable debug mode only on bench rigs.

▪ Enable Manifest and Log with the right level
Verbose in dev, minimal in prod, alert on thresholds.

▪ The story began with a simple idea. A graph can be more than a snapshot of a
model. It can be the plan that a runtime turns into reliable behavior on real
machines. It can be the language that engineers and researchers share. It can be
the bridge between design and the world.

39

Target platform matrix for GO HW v1.0

Below is a pragmatic, coherent set of targets where GO HW will focus first. Each line
shows typical ONNX Runtime providers and the hardware-node bindings expected.

Embedded SoCs and SBCs
▪ Raspberry Pi 4 and 5 Providers: CPU with XNNPACK or ACL when available.

Notes: Linux, GPIO and PWM via kernel drivers, SPI/I2C/ADC through HATs, DMA for
high-rate streams where supported.

▪ NVIDIA Jetson family (Orin, Xavier, Nano) Providers: CUDA, TensorRT.
Notes: CSI cameras through DMA, GPIO and PWM via libgpiod, high-bandwidth video
and DNN offload.

▪ AMD Xilinx Zynq UltraScale+ and Kria Providers: Vitis AI where available, CPU fallback.
Notes: FPGA fabric for deterministic I O, DMA engines, RT-FIFO patterns, PWM and
timers in PL or PS.

▪ NXP i.MX 8M PlusProviders: CPU with XNNPACK, optional NPU via vendor EP when
available. Notes: Industrial-friendly I O, camera pipelines, decent power envelope.

▪ TI Sitara AM62/AM64 Providers: CPU with XNNPACK. Notes: PRU-based I/O timing,
EtherCAT on selected SKUs, good for control loops.

▪ Rockchip RK3588 class boards Providers: CPU with XNNPACK, vendor NPU EP where
supported. Notes: Strong CPU, plentiful I O, popular in edge boxes.

Industrial PCs and controllers
▪ Intel x86-64 IPCs Providers: OpenVINO for CPU and iGPU, CPU EP as baseline.

Notes: Rich PCIe and field-bus cards, predictable thermal budget, long-term support.
▪ Windows IPCs with discrete or integrated GPUs Providers: DirectML for compatible

GPUs, CPU EP as baseline. Notes: Useful where Windows tooling is mandatory.
Industrial automation vendors for device profiles and field-bus drivers
▪ Beckhoff Focus: EtherCAT device profile, GPIO/PWM mapping, DMA paths on IPCs.
▪ Siemens Focus: Industrial PCs and edge devices, Profinet profiles, OPC UA bridges.
▪ Schneider Electric Focus: Industrial PCs, Modbus and Ethernet/IP profiles, gateway

patterns.
▪ Gantner Focus: high-precision DAQ profiles, synchronized sampling and streaming.

This list keeps GO HW general and vendor-neutral. It concentrates on Linux-capable SoCs
and IPCs where ONNX Runtime already runs well and where hardware nodes can bind
cleanly to GPIO, timers, FIFOs, and DMA. Classic closed PLC runtimes are out of scope.
Integration happens through industrial PCs or Linux controllers that sit next to PLCs and
talk over field buses.

40

Frequently Asked Questions (FAQ)
Q1. What happens if a hardware node is used but the target device does not support
it?
A1. The behavior will be defined by the Graiphic Hardware Working Group. Possible
policies include:
Error: execution stops with a clear diagnostic.
Fallback: a safe software emulation or CPU path is used.
The choice will be discussed and standardized openly, so the community agrees on the
expected semantics.

Q2. What if a hardware platform cannot execute the requested operation due to
limitations?
A2. Again, the Working Group will define the policy. Options include a strict error or an
explicit fallback to a compatible provider. The key is that the behavior is not left to private
implementations, it is decided transparently by the community to ensure predictability
and reproducibility.

Q3. Does GO HW force hardware vendors to implement new operators?
A3. No. Just like ONNX Runtime today, where Execution Providers do not support every
ONNX operator (and this has never been a blocker), GO HW operators are optional.
Vendors can freely decide which hardware nodes to support.
To ensure transparency, Graiphic has already benchmarked this phenomenon through
the Execution Provider Coverage Tester (another Graiphic-led open source initiative),
which documents operator support across EPs. The same principle naturally applies to
ONNX HW: optional nodes, no obligation, and clear visibility of what each vendor
supports.

https://github.com/Graiphic/ONNX-Runtime/tree/main/Execution%20Providers%20Tester

41

Q4. Why not just leave this as custom operators managed by individual companies?
A4. Without a common framework, every vendor would create incompatible extensions,
leading to fragmentation and lock-in. A Working Group ensures that policies, schemas,
and naming are agreed upon openly and democratically, avoiding duplication and
incompatibility across the ecosystem.

Q5. Why create a Working Group instead of finalizing the standard directly?
A5. A Working Group allows us to explore, prototype, and refine policies with community
input before anything is standardized. It provides legitimacy, collective ownership, and a
transparent decision process. This avoids the risks of one company pushing a private
initiative and instead guarantees that the evolution of ONNX is guided by shared
consensus.

Q6. How can we address heterogeneous scenarios like DMA, given that each
hardware vendor follows its own protocol?
A6. The reasoning is the same as in ONNX Runtime today: Execution Providers are not
identical and often have different behaviors. ONNX provides a common abstraction layer
while allowing vendor-specific implementations. In practice, there will always be a shared
denominator (common patterns across hardware) and vendor-specific details. The ONNX
HW Working Group will be the place to define:

• how to parameterize nodes in a generic way,
• how to expose vendor-specific extensions,
• and how to manage exceptions consistently.

This ensures both interoperability and flexibility, without forcing uniformity across all
vendors.

42

Call for Funding: Why Industry Should Invest in GO HW

Graiphic has built the first end-to-end ecosystem where AI, logic, and hardware
orchestration live inside a single ONNX graph.

We are now opening a Call for Funding to accelerate the roadmap of GO HW.

Why Invest?

• Strategic Advantage: Gain early access to the first universal cockpit that unifies AI
+ hardware orchestration across CPUs, GPUs, FPGAs, NPUs, and SoCs.

• Portability & Standards: Ensure your hardware, SDKs, and platforms are natively
supported in a framework that is becoming the de facto open standard.

• Energy & Efficiency: Join the revolution of Green AI by design. GO HW introduces
forensic-grade energy metrics and optimization directly inside ONNX graphs.

• Safety & Trust: Participate in shaping the SONNX safety profile, unlocking adoption
in aerospace, defense, automotive, healthcare, and critical infrastructure.

• Market Reach: From Raspberry Pi to NVIDIA Jetson, from industrial PLCs to cloud
servers, GO HW runs everywhere, and your technology can be part of it.

What We Offer

• Co-development opportunities with our engineering team.
• Early integration of your platforms and SDKs into GO HW.
• Joint visibility in international standardization efforts (ONNX, DARPA, Horizon

Europe, ADRA).
• Shared benchmarking and open-source dissemination to establish your

technology as a leader in AI orchestration.

How to Engage

Graiphic is actively seeking:

• Equity investors ready to support our growth.
• Industrial sponsors willing to co-fund R&D and test benches.
• Strategic partners (hardware vendors, system integrators, large OEMs) who want

their platforms at the heart of the future ONNX Hardware ecosystem.

Join us in shaping the universal cockpit for AI.

Contact: funding@graiphic.io | www.graiphic.io

mailto:funding@graiphic.io
http://www.graiphic.io/?utm_source=chatgpt.com

43

Annexes

Support Letters

44

45

Graph Computing for AI Systems: State-of-the-Art (2021–2025)

Introduction

Graph-based computing has become fundamental in modern AI systems. Neural
networks are naturally expressed as computational graphs – nodes represent operations
or layers and edges represent data flows (tensors) between them. Likewise, complex AI
pipelines (from sensor I/O to model inference to actuator control) can be modeled as
directed acyclic graphs (DAGs) or dataflow programs. Representing AI workflows as
graphs enables global optimizations, parallelism, and clarity in system
orchestration[1][2]. This review surveys recent advances (2021–2025) in graph computing
for AI, covering both academic research and industrial frameworks. We examine
computational graph execution, dataflow/DAG systems, graph neural networks, and
runtime scheduling on heterogeneous hardware, as well as major graph-centric AI
frameworks. We then compare these solutions to the emerging ONNX GO HW approach
for unified, real-time AI system orchestration.

Academic Advances in Graph Computing (2021–2025)

Computational Graph Execution: Static vs Dynamic Graphs and Scheduling

Early deep learning frameworks like TensorFlow (<=1.x) employed static computational
graphs, requiring the full network graph to be defined (and optimized) ahead of execution.
Newer frameworks such as PyTorch and TensorFlow 2.x emphasized dynamic graphs –
networks defined imperatively, allowing flexible structures (e.g. loops, conditionals) and
easier debugging[3]. Static graphs excel at global optimization: the graph can be
compiled for efficient execution (node fusions, memory planning, etc.), often yielding
faster runtimes once built. Dynamic graphs offer flexibility for dynamic control flow and

https://arxiv.org/html/2504.20198v1#:~:text=practical%20applications%20across%20various%20computational,Graph
https://graiphic.io/labview-everywhere-onnx/#:~:text=Yet%20hidden%20inside%20ONNX%20are,math%3B%20it%E2%80%99s%20a%20living%20schedule
https://www.tutorialspoint.com/chainer/chainer-dynamic-vs-static-graphs.htm#:~:text=Chainer%3A%20Dynamic%20vs%20Static%20Graphs,This%20approach%20provides

46

variable-length data, at some cost to peak performance. Modern systems are
increasingly hybrid. For example, PyTorch 2.0 introduced TorchDynamo and other JIT
compilers to capture dynamic graphs and compile them, aiming to get the best of both
worlds (eager flexibility with optimized execution)[1]. Recent research also explores new
scheduling algorithms for computational graphs. Zhao et al. (OSDI 2023) present a
method to effectively schedule DNN computation graphs on specialized accelerators
by co-designing with hardware architecture, achieving over 11× speedup vs. TVM on a
custom domain-specific chip[4][5]. Overall, the state-of-the-art emphasizes graph
compilers and schedulers that can optimize computation graphs end-to-end, maximizing
hardware utilization while accommodating dynamic behaviors.

Dataflow and DAG-Based Systems for Distributed and Embedded Execution

Beyond neural network graphs, many AI workflows are orchestrated as dataflow
pipelines or DAGs, especially in distributed or edge deployments. Data preprocessing,
model inference, and postprocessing can be chained as graph nodes. Academic systems
like Ray and DAG-aware schedulers aim to efficiently distribute such task graphs over
clusters, but embedded and real-time settings pose additional constraints (latency,
memory). Flow-based programming concepts have re-emerged in AI: for instance,
streaming systems (Apache Beam/Google Dataflow) represent computations as DAGs of
operations that can scale out. On the embedded side, research has examined combining
control and AI in signal processing pipelines using DAG scheduling with real-time
constraints[6][7]. Many robotics and IoT applications use graph-based pipe-and-filter
architectures: nodes for sensing, perception (AI models), planning, and actuation,
connected by data streams. Ensuring deterministic execution and low jitter in these
DAGs is an ongoing challenge. Academic works on real-time DAG scheduling on
heterogeneous CPUs/accelerators (e.g. for autonomous vehicles) have introduced
approaches like graph scheduling with GNN-based heuristics[8], indicating a crossover
of graph computing and learning-based optimization. In summary, representing AI
system workflows as dataflow graphs is now common; recent research is improving how
we map and schedule these DAGs across distributed or embedded resources for
efficiency and reliability.

Graph Neural Networks and Graph-Based Data Processing

In parallel to using graphs for computation scheduling, AI models themselves
increasingly operate on graph-structured data. Graph Neural Networks (GNNs) have
become a major research frontier, extending deep learning to arbitrary graph data (social
networks, molecules, knowledge graphs, etc.). GNN research 2021–2025 produced new
architectures and theoretical insights. Early GNNs like GCN and GraphSAGE used
localized message-passing; more recent models incorporate attention and transformer
mechanisms to capture long-range dependencies on graphs[9]. For example,
Graphormer (Microsoft, 2021) demonstrated that with the right positional encodings, a
Transformer can achieve state-of-the-art on graph benchmarks by effectively treating the
graph as a fully-connected attention network[9][10]. There is also growing work on
temporal GNNs (graphs that evolve over time) – a 2023 survey formalized the state-of-
the-art and open challenges in temporal graph learning[11]. Moreover, the scalability of
GNNs is a key focus: techniques like neighbor sampling, mini-batch training, and
distributed GNN frameworks (e.g. DGL, PyTorch Geometric) enable learning on large

https://arxiv.org/html/2504.20198v1#:~:text=practical%20applications%20across%20various%20computational,Graph
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=This%20paper%20introduces%20a%20systematic,imbalanced%20memory%20usage%20distribution%20across
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=different%20specialized%20compute%20units,23%C3%97%2C%20respectively
https://www.sciencedirect.com/science/article/abs/pii/S0167739X25003425#:~:text=A%20learnable%20dynamic%20scheduling%20for,utilization%20and%20workflow%20execution
https://www.nature.com/articles/s41598-025-94068-0#:~:text=,consumption%20under%20response%20time%20constraints
https://www.mdpi.com/2076-3417/15/10/5648#:~:text=MDPI%20www,combined%20with%20deep%20reinforcement%20learning
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CSo%20people%20asked%20how%20we,connected%20to%20every%20other%20token
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CSo%20people%20asked%20how%20we,connected%20to%20every%20other%20token
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CIf%20every%20node%20can%20communicate,%E2%80%9D
https://arxiv.org/abs/2302.01018#:~:text=arXiv%20arxiv,rigorous%20formalization%20of%20learning

47

graphs with millions of nodes. Researchers are exploring high-performance GNN training
on CPU-GPU clusters[12][13] and even custom hardware (e.g. Graphcore IPUs
specialized for graph workloads). Another trend is combining GNNs with causal
inference and knowledge graphs, or using GNNs in multi-agent systems and program
analysis[14][15]. In summary, graph-based data processing is now a staple of AI, and
state-of-the-art GNN techniques push both model accuracy and efficiency (with co-
design from algorithms down to hardware acceleration[16][17]).

Runtime Systems and Heterogeneous Scheduling for Computation Graphs

Executing computational graphs efficiently on heterogeneous hardware (CPUs, GPUs,
FPGAs, NPUs, etc.) is an active research area. Academic work has shown that graph
compilers and runtimes can drastically improve performance by optimizing placement,
memory layout, and kernel fusion. For instance, Furutanpey et al. (2025)
comprehensively evaluated neural network graph compilers across hardware and
found that vendor-specific optimizations (TensorRT, OpenVINO, etc.) can invert which
model runs faster on a given hardware[18][19]. This underscores that compilers are now
as important as model architecture for deployment. Modern compilers like TVM (Apache
TVM) use auto-tuning to generate optimized kernels for each target, achieving
performance portability across diverse backends[20]. Similarly, Google’s XLA (used in
JAX and TensorFlow) and Meta’s Glow compiler perform graph-level optimizations
(constant folding, operator fusion) and emit device-specific code. A key development is
support for graph partitioning and offloading – splitting a graph so parts run on
specialized accelerators (e.g. DSP, FPGA) while others run on CPU/GPU. Research on
scheduling such partitions shows that considering hardware topology (memory
hierarchy, interconnect) when partitioning yields big gains[4][21]. There is also interest in
real-time scheduling of neural network graphs on accelerators in safety-critical
contexts[22]. A recent survey (2023) on real-time scheduling for accelerators notes the
need for deterministic execution of computation graphs under timing constraints[23]. In
summary, state-of-the-art runtime systems use graph-level knowledge to orchestrate
execution across heterogeneous hardware, achieving major throughput improvements
while beginning to address predictability and real-time needs.

Industrial Frameworks and Ecosystems

Modern AI software stacks heavily leverage graph representations. Below we review
major industrial frameworks in three categories: model compilers/runtimes, graph-
based pipeline orchestrators, and hardware-specific graph SDKs/DSLs.

Model Compilers and Runtimes (Graph Optimizers)

• ONNX Runtime (ORT) – A high-performance, cross-platform engine for executing
ONNX computational graphs. Developed by Microsoft, ORT takes an
interoperable graph (ONNX model) and optimizes it with graph rewrites and
kernel fusions, then dispatches to hardware-specific backends (EPs). It provides
a flexible API and integrates many hardware accelerators via Execution
Providers, from CUDA and TensorRT to DirectML and CoreML[24][25]. ORT is
widely used in production for its portability – the same ONNX graph can run on
CPU, GPU, mobile NPUs, etc., with the runtime choosing the fastest path[26].

https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=Scaling%20graph,clusters
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=you%20want%20to%20solve%20the,the%20training%2C%20accelerate%20the%20inference
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CThere%E2%80%99s%20some%20work%20on%20how,are%20independent%20from%20each%20other
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CThere%20is%20also%20a%20new,inject%20that%20time%20information%20in
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=Efficiency
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CSo%20that%27s%20at%20the%20algorithm,the%20training%2C%20accelerate%20the%20inference
https://arxiv.org/html/2504.20198v1#:~:text=relative%20performance%20across%20competing%20architectures,18%20will%20detail%20experiment%20configurations
https://arxiv.org/html/2504.20198v1#:~:text=Image%3A%20Refer%20to%20caption%20Figure,observe%20the%20exact%20inverse%20behavior
https://www.usenix.org/system/files/osdi18-chen.pdf#:~:text=Learning%20www,portability%20to%20deep%20learning
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=This%20paper%20introduces%20a%20systematic,imbalanced%20memory%20usage%20distribution%20across
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=our%20work%20enables%20the%20synergy,across%20different%20specialized%20compute%20units
https://www.nature.com/articles/s41598-025-94068-0#:~:text=,consumption%20under%20response%20time%20constraints
https://arxiv.org/html/2403.07120v1#:~:text=Comparing%20Task%20Graph%20Scheduling%20Algorithms%3A,with%20the%20objective%20of
https://onnx.ai/#:~:text=ONNX%20,to%20maximize%20performance%20across%20hardware
https://onnxruntime.ai/docs/execution-providers/QNN-ExecutionProvider.html#:~:text=The%20QNN%20Execution%20Provider%20for,devices%20with%20Qualcomm%20Snapdragon%20SOC%E2%80%99s
https://onnx.ai/#:~:text=runtimes%20and%20libraries%20designed%20to,maximize%20performance%20across%20hardware

48

• Apache TVM – An open source deep learning compiler stack that builds end-to-
end optimized code for models. TVM takes a model’s graph (from frameworks like
PyTorch or TensorFlow) and applies optimizations at both the graph level (operator
fusion, layout changes) and the tensor operation level (auto-tuned kernel code
generation)[20]. It aims for performance portability: developers write a model
once, and TVM can compile it for CPUs, GPUs, ASICs, and even
microcontrollers[27]. Techniques like the Ansor auto-scheduler explore
optimized compute schedules automatically[28]. TVM has become a backbone
for many vendor-specific compilers and is used in Amazon’s and ARM’s
toolchains for efficient inference.

• Google XLA – The Accelerated Linear Algebra compiler, originally for TensorFlow,
now underlies JAX and parts of PyTorch (via TorchXLA). XLA traces and compiles
whole computation graphs into optimized executables (HLO IR) for each target
(CPU, GPU, TPU). It excels at static graph optimizations – constant folding,
operation fusion, buffer reuse – and can also do ahead-of-time compilation for
production. XLA’s graph optimizations improve performance and can give more
predictable execution (important in Google’s large-scale deployments).

• NVIDIA TensorRT – A high-throughput deep learning inference runtime that
optimizes neural network graphs for NVIDIA GPUs. TensorRT performs aggressive
optimizations like combining layers, using reduced precision (FP16/INT8), and
auto-tuning kernels. It represents the model as a graph of layers and integrates
with NVIDIA’s CUDA libraries. In practice, TensorRT often significantly reduces
latency and increases throughput for CNNs, transformers, etc. on GPU. However,
it is limited to NVIDIA hardware and primarily focuses on inference (not training).

• Meta Glow – A graph lowering compiler from Facebook (Meta) that targets various
hardware backends. Glow takes in a neural network computation graph and
lowers it through two IR levels: an optimization IR for high-level graph opts, and a
lower-level IR closer to hardware ops[29]. It can then generate code for CPUs,
GPUs, or custom accelerators. Glow’s design emphasizes a modular backend
architecture and has been used to deploy models on mobile devices and
specialized ASICs at Meta[30]. (Glow is open source, though in recent years ORT
and TVM have seen broader adoption.)

• Others – OpenVINO (Intel) is another graph-oriented runtime, converting models
to an IR and optimizing for Intel CPUs, iGPUs, and VPUs[19]. TensorFlow Lite uses
FlatBuffer graphs and delegation to hardware drivers for mobile inference.
PyTorch’s NNAPI and CoreML backends similarly convert the PyTorch graph to run
on Android or iOS accelerators. All these frameworks share the goal of maximizing
model execution efficiency via graph-level insights, at the cost of additional
compilation or conversion steps.

Graph-Based Pipeline Orchestration Systems

• NVIDIA Triton Inference Server – A server framework for deploying AI models at
scale, with support for model pipelines (ensembles). Triton treats an ensemble
as a DAG of models and processing steps, where the output of one model feeds
the next[31]. This allows building end-to-end AI services (e.g. decode image →
detect objects → filter results) all within the server. The ensemble DAG execution
is handled by Triton’s scheduler, avoiding extra data copies and network hops

https://www.usenix.org/system/files/osdi18-chen.pdf#:~:text=Learning%20www,portability%20to%20deep%20learning
https://medium.com/the-software-frontier/making-ai-compute-accessible-to-all-part-7-inside-the-tvm-stack-and-its-lasting-impact-88f901788604#:~:text=,models%20across%20different%20hardware%20platforms
https://tvm.apache.org/2021/03/03/intro-auto-scheduler#:~:text=Introducing%20TVM%20Auto,performance%20code%20without%20manual%20templates
https://medium.com/geekculture/glow-graph-lowering-compiler-techniques-for-neural-network-fb1eacbd0508#:~:text=Glow%3A%20Graph%20Lowering%20Compiler%20Techniques,generation%20of%20neural%20networks%20graphs
https://www.nxp.com/design/design-center/software/eiq-ai-development-environment/eiq-inference-with-glow-nn:eIQ-Glow#:~:text=eIQ%C2%AE%20Inference%20with%20Glow%20NN,for%20the%20ONNX%20model%20format
https://arxiv.org/html/2504.20198v1#:~:text=Image%3A%20Refer%20to%20caption%20Figure,observe%20the%20exact%20inverse%20behavior
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/ensemble_models.html#:~:text=An%20ensemble%20model%20represents%20a,must%20be%20sent%20to%20Triton

49

between models[31][32]. Triton supports multi-framework models (TensorFlow,
PyTorch, ONNX, etc.) and handles scheduling, batching, and I/O, making
production deployment of graph-based AI pipelines easier.

• NVIDIA Holoscan & GXF – Holoscan is an SDK for real-time sensor and AI
processing on edge devices (e.g. NVIDIA Jetson/Orin). It is built on the Graph
Execution Framework (GXF), which executes component networks with strict
scheduling. In GXF/Holoscan, an application is described as a compute graph of
entities (nodes) connected by edges[33]. Each entity contains components
(codelets) for specific tasks, and the framework provides a scheduler, memory
manager (for zero-copy buffers), and message passing primitives[34][35].
Developers can string together sensor input nodes, AI inference nodes, and output
nodes, and Holoscan will orchestrate them with low latency. This is used in
domains like medical imaging, where a stream of data must pass through an AI
pipeline on-device in real time.

• NVIDIA DeepStream – A graph-driven pipeline framework specialized for video
analytics and IoT, built on GStreamer. DeepStream allows construction of vision
processing pipelines (ingest streams, decode, infer with DNNs, track, display)
using a graph specification. Under the hood, each GStreamer element (e.g. a
decoder, an inference plugin) is wrapped as a node (component) in a graph,
managed by NVIDIA’s graph composer runtime[36][37]. This lets developers
assemble complex multimedia AI applications with minimal coding – the
configuration (often via YAML or a visual tool) defines how frames flow through a
DAG of plugins. DeepStream, coupled with Graph Composer, thus exemplifies a
graph-based orchestrator for edge AI, though primarily targeting NVIDIA hardware
and streaming use cases.

• ROS 2 (Robot Operating System 2) – A popular open-source framework for
robotic systems, which follows a dataflow graph paradigm at a high level. A ROS
2 system is composed of many modular nodes (sensing, planning, control, etc.)
that exchange messages via topics (or services), forming a computational graph
of the robot’s software[38]. ROS 2’s middleware (DDS) handles message transport
between nodes, which may be distributed across multiple processors. The ROS
graph can be introspected (e.g. via rqt_graph) to see how data flows between
components. While ROS 2 is not limited to AI, it increasingly integrates AI modules
(for example, a node running a deep learning model subscribing to camera images
and publishing detections). It provides a standardized way to orchestrate
complex, distributed systems, but being a general framework, achieving hard real-
time behavior or deterministic scheduling requires additional patterns or the Real-
Time ROS extensions.

• LabVIEW – An established graphical programming environment (from National
Instruments) based on the dataflow model. Engineers “program” by connecting
functional blocks (nodes) with wires (edges that carry data), naturally creating a
graph that represents the system logic. LabVIEW has been traditionally used for
instrumentation, control, and measurement systems. Each loop, formula, or I/O
operation is a node in a LabVIEW block diagram, and the LabVIEW runtime
schedules execution according to dataflow: a node runs when all its inputs have
data available[39]. This approach made complex systems easier to design and
visualize. However, deploying LabVIEW programs onto embedded targets

https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/ensemble_models.html#:~:text=An%20ensemble%20model%20represents%20a,must%20be%20sent%20to%20Triton
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/ensemble_models.html#:~:text=The%20ensemble%20scheduler%20must%20be,model%20from%20an%20external%20view
https://docs.nvidia.com/clara-holoscan/archive/clara-holoscan-0.3.0/gxf/index.html#:~:text=Holoscan%20GXF%20applications%20are%20built,recompile%20any%20extensions%20or%20application
https://docs.nvidia.com/clara-holoscan/archive/clara-holoscan-0.3.0/gxf/index.html#:~:text=,scheduling%2C%20and%20other%20custom%20behavior
https://docs.nvidia.com/clara-holoscan/archive/clara-holoscan-0.3.0/gxf/index.html#:~:text=,copy
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Zero_Coding_DS_Components.html#:~:text=DeepStream%2FGstreamer%20pipeline%20is%20implemented%20using,types%20used%20in%20DeepStream%20graphs
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Zero_Coding_DS_Components.html#:~:text=This%20interface%20is%20used%20by,ordinates%20of%20detected%20objects
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html#:~:text=ROS%202%20breaks%20complex%20systems,for%20nodes%20to%20exchange%20messages
https://graiphic.io/labview-everywhere-onnx/#:~:text=For%20nearly%20four%20decades%2C%20LabVIEW,the%20oscilloscope%20of%20entire%20factories

50

historically required the LabVIEW runtime or FPGA-specific code generation,
limiting portability. LabVIEW is a precursor of modern DAG orchestration tools in
its philosophy, and its visual programming style remains highly accessible. Recent
efforts (e.g. from Graiphic) even integrate AI model graphs (via ONNX) into
LabVIEW, blurring the line between traditional dataflow programming and AI graph
execution[40][41].

Hardware-Specific SDKs and Graph DSLs

• AMD Vitis AI – A comprehensive development stack for accelerating AI inference
on Xilinx/AMD FPGAs and adaptive SoCs. Vitis AI includes model optimizers,
quantization tools, and compilers that take a trained network (TensorFlow,
PyTorch, ONNX, etc.) and compile it to run on a FPGA’s deep learning processing
unit (DPU) IP. It is essentially a graph compiler + runtime specialized for Xilinx
devices. Developers can deploy models on edge boards (like Zynq, Versal) with
support for 8-bit quantization and batch processing. According to AMD, “Xilinx
Vitis AI is a development stack for AI inference on Xilinx hardware platforms”,
allowing integration of one or more DPU accelerator kernels into a design[42]. The
stack provides APIs to run the compiled model and manage memory, with the goal
of near ASIC-like efficiency using reconfigurable logic.

• Adaptive Dataflow (ADF) – Xilinx Graph DSL for AI Engines: Xilinx’s Versal ACAP
platforms include an array of VLIW processors called AI Engines (AIE). These are
programmed via the ADF API (Adaptive Data Flow), a C++ graph DSL. Using ADF,
developers specify a dataflow graph of kernels (functions) and streams
connecting them, which the toolchain then schedules onto the many-core AIE
array[43][44]. Kernels exchange data via ping-pong buffers (windows) or streams
over the on-chip network. The ADF model lets multiple kernels execute in parallel,
streaming data between each other without going to off-chip memory. For
example, a signal processing pipeline of filters and neural network layers can be
mapped as a graph, and the ADF runtime ensures each kernel runs on an AI Engine
core with synchronized data movement. This graph-level programming is crucial
to fully harness the AIE fabric’s performance, and it abstracts away a lot of the low-
level thread and DMA management for the programmer[43].

• Qualcomm QNN (AI Engine Direct SDK) – Qualcomm provides the Qualcomm
Neural Network (QNN) SDK, also known as AI Engine Direct, for running AI
models on Snapdragon SoC accelerators (Hexagon DSPs, NPUs, GPUs).
Developers or frameworks (like ONNX Runtime) use QNN to construct a
hardware-specific graph from an abstract model, which can then be executed on
the device’s AI cores[25]. For instance, the ONNX Runtime QNN execution
provider transforms an ONNX model into a QNN graph and delegates it to
Qualcomm’s libraries[25]. The QNN SDK handles heterogeneous execution
across CPU, Adreno GPU, and the Hexagon-based HTP (Hexagon Tensor
Processor). It includes offline quantization and optimization tools as well. QNN is
essentially Qualcomm’s answer to TensorRT or Vitis: it optimizes neural network
graphs to leverage specialized DSP/NPU instructions for fast inference on
mobile/embedded platforms.

• Other Graph DSLs/SDKs – NVIDIA CUDA Graphs (introduced in CUDA 10) allow
forming a graph of GPU kernels and memcopy operations to reduce launch

https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=SOTA%20,or%20any%20external%20conversion%20tools
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=ONNX%20GO%3A%20Going%20Further%20in,Graph%20Orchestration
http://alpha-data.com/pdfs/ad-an-0131_v1_0.pdf#:~:text=such%20as%20VGG%2C%20ResNet%2C%20GoogleNet%2C,Vitis%20Base%20Platform
https://arxiv.org/html/2410.00825v1#:~:text=The%20AIEs%20can%20be%20programmed,RTL
https://arxiv.org/html/2410.00825v1#:~:text=The%20AIEs%20can%20be%20programmed,RTL
https://arxiv.org/html/2410.00825v1#:~:text=The%20AIEs%20can%20be%20programmed,RTL
https://onnxruntime.ai/docs/execution-providers/QNN-ExecutionProvider.html#:~:text=The%20QNN%20Execution%20Provider%20for,devices%20with%20Qualcomm%20Snapdragon%20SOC%E2%80%99s
https://onnxruntime.ai/docs/execution-providers/QNN-ExecutionProvider.html#:~:text=The%20QNN%20Execution%20Provider%20for,devices%20with%20Qualcomm%20Snapdragon%20SOC%E2%80%99s

51

overhead – useful for regular inference/training loops. Intel oneAPI/dnnl graph
(formerly nGraph) was an IR to represent deep learning computations for Intel
accelerators, now part of OpenVINO. ARM NN SDK provides a graph-based API to
run networks on ARM CPU, Mali GPU, or Ethos NPU. Many smaller vendors
(Cambricon, Imagination, etc.) also expose graph-level compilers to integrate
their neural accelerators. The common theme is exposing a graph abstraction to
developers so that the runtime can map computations efficiently to the hardware,
rather than writing device-specific code for each layer.

Toward Unified Graph Orchestration: ONNX GO HW vs. Existing Solutions

Despite the rich ecosystem above, current solutions often address pieces of the AI
system puzzle. Each framework tends to focus either on neural network computation or
on pipeline orchestration or on low-level hardware acceleration, but not all at once. This
fragmentation means engineers stitch together multiple tools – for example, using
TensorRT for model inference inside a ROS2 or LabVIEW application for control logic, and
writing custom glue code for I/O and scheduling. Below, we compare what existing
frameworks do well and where they fall short, especially in light of goals like full-system
graph unification and real-time performance.

Strengths of Existing Frameworks: Modern compilers and runtimes excel at optimizing
neural network graphs for performance. They provide tremendous speed-ups by fusing
operations and leveraging hardware-specific libraries (for instance, graph compilers can
“enhance throughput by orders of magnitude” without changing model accuracy[1]).
Meanwhile, pipeline tools like ROS 2 and DeepStream are great at modularity and
integration – they break complex systems into nodes and allow mixing and matching
components (sensors, AI models, etc.) via standardized interfaces[38]. Industrial
orchestrators handle concurrency and data transport (e.g. Triton’s ensemble scheduler
avoids overhead by keeping data on-device between model stages[31][45]). Hardware-
specific SDKs provide maximal efficiency on their targets – e.g. Vitis AI can get FPGA
inference running with low batch latency, and QNN squeezes optimal performance from
Snapdragon NPUs. In summary, each class of tool is highly optimized for its domain:
neural network execution, multi-component pipelines, or low-level hardware utilization.

Limitations and Gaps: No current framework fully unifies AI models, general logic, and
I/O control in one graph with portability across systems. Graph compilers (ORT,
TensorRT, etc.) treat the model in isolation – any surrounding logic (preprocessing,
decisions based on model output, device commands) must be implemented in separate
code. Pipeline orchestrators like ROS or LabVIEW handle I/O and control flow but
typically treat the AI model as a black box or external function call, rather than integrating
it into a single executable graph representation. This separation can cause inefficiencies
(data copying between runtime environments) and complexity in verifying end-to-end
behavior. Moreover, many solutions lack real-time determinism. For example, a ROS2
or DeepStream pipeline might achieve high throughput on average, but without careful
design one can’t guarantee microsecond-level jitter bounds – message queues and
dynamic scheduling can introduce variability. Traditional LabVIEW on a PC wasn’t
designed for hard real-time control either – it often required a special real-time module
or FPGA for deterministic timing. Portability is another issue: frameworks like TensorRT
or Vitis are vendor-locked (NVIDIA-only, Xilinx-only), and even a “platform-neutral”

https://arxiv.org/html/2504.20198v1#:~:text=practical%20applications%20across%20various%20computational,Graph
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html#:~:text=ROS%202%20breaks%20complex%20systems,for%20nodes%20to%20exchange%20messages
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/ensemble_models.html#:~:text=An%20ensemble%20model%20represents%20a,must%20be%20sent%20to%20Triton
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/ensemble_models.html#:~:text=for%20this%20purpose%20can%20avoid,must%20be%20sent%20to%20Triton

52

runtime like ORT doesn’t inherently handle I/O or synchronizing with control loops – so
developers resort to platform-specific code for those parts. In short, current SOTA tools
tend to create silos: one for AI inference, one for control logic, one for hardware
interfacing[46]. This makes it challenging to maintain a single source of truth for the
entire AI system’s behavior.

SOTA + ONNX GO HW: A Step Toward Unified, Real-Time Orchestration: SOTA (State
Of The Art) and ONNX GO HW are recent initiatives (2025) by Graiphic that aim to address
the above gaps by leveraging ONNX as a common graph representation beyond neural
networks[47][40]. SOTA is a fully ONNX-native AI framework integrated into LabVIEW,
which allows designing and even training deep learning models directly as ONNX graphs
(with visual editing)[40]. More importantly for deployment, ONNX GO is a runtime that can
orchestrate ONNX graphs in real time – essentially treating an ONNX graph as a
program that runs across heterogeneous hardware, with ONNX Runtime under the hood
for execution[41]. The upcoming ONNX GO HW extension goes further: it introduces
standardized hardware-interfacing nodes (for DMA transfers, GPIO, ADC/DAC, timers,
etc.) as part of the ONNX graph[48]. This means an engineer could represent an entire
system – sensor input, decision logic (including AI model inference and classical code),
and actuator output – as one ONNX computational graph. The ONNX Runtime then
executes this graph end-to-end, calling out to hardware where needed (e.g. reading a
sensor value into a tensor, feeding it through a neural net, then writing a control
signal)[48]. All of it is scheduled by a single engine, rather than hopping between different
runtimes.

Example: Unified graph orchestration on an SoC. In this architecture, a LabVIEW-
designed diagram is compiled to an ONNX graph (containing AI models, control logic, and
I/O nodes) and deployed to a target device. ONNX Runtime executes the graph as a data-
plane on the device (utilizing hardware accelerators via execution providers, and
performing I/O through hardware nodes), while a remote control-plane monitors and
adjusts the system via secure RPC. This approach yields a single, portable graph
representation governing the whole AI system, improving transparency and determinism.

By unifying everything in the ONNX graph, ONNX GO HW provides several advantages:
Full-System Graph Unification – the entire pipeline is a single graph artifact, which can
be inspected, tested, and versioned. This graph isn’t just neural network layers; it can
include conditional logic (ONNX If nodes), loops (Loop/Scan), and now hardware
interactions, enabling complex scheduling and decision-making to be encoded
declaratively[2]. Graiphic’s CTO describes it aptly: “With [ONNX’s] If, Loop, and Scan, a
graph can decide, repeat, and orchestrate – not just what to compute, but when and how.
Suddenly, an ONNX model is not frozen math; it’s a living schedule”[2]. Integrated
Control and I/O – ONNX GO HW’s hardware nodes allow direct graph-level interfacing
with devices[48]. For example, one could have an ONNX subgraph that reads a digital
input, feeds it into a decision neural net, then through an If node decides whether to
activate an output. Traditionally, the “glue” for such logic would be written in C++ or
Python outside the model, but here it’s part of the graph. This not only reduces
development effort (no separate code for integration) but also ensures the entire
execution can be analyzed for timing. Portability – ONNX graphs are portable by design;
a single ONNX file can run on x86, ARM, NVIDIA GPUs, FPGAs (via Vitis), Qualcomm NPUs

https://graiphic.io/labview-everywhere-onnx/#:~:text=LabVIEW%20has%20always%20been%20ergonomic,were%20locked%20in%20proprietary%20runtimes
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=Redefining%20the%20Role%20of%20ONNX,in%20Deep%20Learning
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=SOTA%20,or%20any%20external%20conversion%20tools
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=SOTA%20,or%20any%20external%20conversion%20tools
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=ONNX%20GO%3A%20Going%20Further%20in,Graph%20Orchestration
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=Looking%20ahead%2C%20Graiphic%20is%20preparing,general%20processing%2C%20and%20hardware%20I%2FO
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=Looking%20ahead%2C%20Graiphic%20is%20preparing,general%20processing%2C%20and%20hardware%20I%2FO
https://graiphic.io/labview-everywhere-onnx/#:~:text=Yet%20hidden%20inside%20ONNX%20are,math%3B%20it%E2%80%99s%20a%20living%20schedule
https://graiphic.io/labview-everywhere-onnx/#:~:text=Yet%20hidden%20inside%20ONNX%20are,math%3B%20it%E2%80%99s%20a%20living%20schedule
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=Looking%20ahead%2C%20Graiphic%20is%20preparing,general%20processing%2C%20and%20hardware%20I%2FO

53

(via QNN), etc., as long as there is an ONNX Runtime execution provider for that
hardware. ONNX GO leverages this by allowing LabVIEW-designed systems to be
deployed on “any hardware” without requiring the LabVIEW runtime on the target[49][50].
This is a significant shift: in one use case, they demonstrate designing a control system
in LabVIEW and deploying it to run on a Raspberry Pi solely via an ONNX graph artifact[51].
In essence, the ONNX graph becomes a universal, vendor-neutral bytecode for AI
systems. Finally, Real-Time Determinism and Efficiency – ONNX Runtime can compile
a graph (especially with formats like ORT format or by using static execution planners)
such that execution is repeatable and time-predictable. The LabVIEW+ONNX approach
highlights determinism: “ONNX Runtime [sessions] compiled once, [are] stable across
runs”, providing consistent timing[52]. Eliminating middleware layers (like a separate
script invoking model inference) cuts down variability and latency – e.g., avoiding
unnecessary buffer copies and context switches. Early indications (from Graiphic’s
demos) show ONNX GO can achieve millisecond-range response with low jitter for vision-
and-control tasks at the edge[53]. The unified graph also simplifies certification and
validation in safety-critical fields, since the whole logic (AI + non-AI) can be audited as
one unit[54].

In summary, ONNX GO HW represents a convergence of ideas: it treats everything as a
graph – not just neural nets, but loops, decisions, and hardware interactions – and uses
a single runtime to execute that graph on any platform with high efficiency. Existing
frameworks paved the way with optimized graph execution and modular pipelines, but
they lacked this one-graph-to-rule-them-all unification. The combination of SOTA (visual
design and training of ONNX models in LabVIEW) and ONNX GO HW (universal graph
orchestration with hardware access) can be seen as a step forward toward truly unified,
portable, and real-time AI system orchestration. It aims to deliver the ergonomics of
LabVIEW, the portability of ONNX, and the performance of optimized runtimes, in one
package[46][48]. If successful, this approach could significantly reduce the complexity
of deploying advanced AI systems in domains like robotics, industrial control, and
autonomous vehicles – empowering a single graph to reliably run an entire intelligent
workflow from sensing to actuation, regardless of the underlying hardware.

Sources: The information in this review is drawn from recent scientific papers, industry
documentation, and technology blogs. Key references include academic studies on
neural network compilers and scheduling[18][4], surveys on graph neural networks[9],
and documentation of frameworks like NVIDIA Triton[31], Holoscan GXF[33], ROS 2[38],
DeepStream[36], Vitis AI[42], AMD ADF[43], and Qualcomm QNN SDK[25]. The
discussion on ONNX GO HW and SOTA is based on reports from Graiphic’s 2025 GLA
Summit presentation[41][48] and follow-up articles[2][52], which outline this emerging
unified graph approach.

[1] [18] [19] Leveraging Neural Graph Compilers in Machine Learning Research for Edge-
Cloud Systems
https://arxiv.org/html/2504.20198v1
[2] [39] [46] [51] [52] [53] [54] LabVIEW Everywhere: From Gauges to Pilot - Graiphic
https://graiphic.io/labview-everywhere-onnx/
[3] Chainer: Dynamic vs Static Graphs - Tutorialspoint

https://graiphic.io/labview-everywhere-onnx-go-hw/#:~:text=What%20if%20LabVIEW%20deployed%20without,and%20I%2FO%20across%20targets
https://graiphic.io/tag/edge-ai/#:~:text=Edge%20AI%20Archives%20,read%20more
https://graiphic.io/labview-everywhere-onnx/#:~:text=,aerospace%2C%20defense%2C%20and%20automotive%20realistic
https://graiphic.io/labview-everywhere-onnx/#:~:text=On%20a%20chip%2C%20efficiency%20is,was%20built%20for%20this%20world
https://graiphic.io/labview-everywhere-onnx/#:~:text=Imagine%20a%20bottling%20line,delay%2C%20just%20silicon%20and%20graph
https://graiphic.io/labview-everywhere-onnx/#:~:text=,aerospace%2C%20defense%2C%20and%20automotive%20realistic
https://graiphic.io/labview-everywhere-onnx/#:~:text=LabVIEW%20has%20always%20been%20ergonomic,were%20locked%20in%20proprietary%20runtimes
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=Looking%20ahead%2C%20Graiphic%20is%20preparing,general%20processing%2C%20and%20hardware%20I%2FO
https://arxiv.org/html/2504.20198v1#:~:text=relative%20performance%20across%20competing%20architectures,18%20will%20detail%20experiment%20configurations
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=This%20paper%20introduces%20a%20systematic,imbalanced%20memory%20usage%20distribution%20across
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CSo%20people%20asked%20how%20we,connected%20to%20every%20other%20token
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/ensemble_models.html#:~:text=An%20ensemble%20model%20represents%20a,must%20be%20sent%20to%20Triton
https://docs.nvidia.com/clara-holoscan/archive/clara-holoscan-0.3.0/gxf/index.html#:~:text=Holoscan%20GXF%20applications%20are%20built,recompile%20any%20extensions%20or%20application
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html#:~:text=ROS%202%20breaks%20complex%20systems,for%20nodes%20to%20exchange%20messages
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Zero_Coding_DS_Components.html#:~:text=DeepStream%2FGstreamer%20pipeline%20is%20implemented%20using,types%20used%20in%20DeepStream%20graphs
http://alpha-data.com/pdfs/ad-an-0131_v1_0.pdf#:~:text=such%20as%20VGG%2C%20ResNet%2C%20GoogleNet%2C,Vitis%20Base%20Platform
https://arxiv.org/html/2410.00825v1#:~:text=The%20AIEs%20can%20be%20programmed,RTL
https://onnxruntime.ai/docs/execution-providers/QNN-ExecutionProvider.html#:~:text=The%20QNN%20Execution%20Provider%20for,devices%20with%20Qualcomm%20Snapdragon%20SOC%E2%80%99s
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=ONNX%20GO%3A%20Going%20Further%20in,Graph%20Orchestration
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=Looking%20ahead%2C%20Graiphic%20is%20preparing,general%20processing%2C%20and%20hardware%20I%2FO
https://graiphic.io/labview-everywhere-onnx/#:~:text=Yet%20hidden%20inside%20ONNX%20are,math%3B%20it%E2%80%99s%20a%20living%20schedule
https://graiphic.io/labview-everywhere-onnx/#:~:text=On%20a%20chip%2C%20efficiency%20is,was%20built%20for%20this%20world
https://arxiv.org/html/2504.20198v1#:~:text=practical%20applications%20across%20various%20computational,Graph
https://arxiv.org/html/2504.20198v1#:~:text=relative%20performance%20across%20competing%20architectures,18%20will%20detail%20experiment%20configurations
https://arxiv.org/html/2504.20198v1#:~:text=Image%3A%20Refer%20to%20caption%20Figure,observe%20the%20exact%20inverse%20behavior
https://arxiv.org/html/2504.20198v1
https://graiphic.io/labview-everywhere-onnx/#:~:text=Yet%20hidden%20inside%20ONNX%20are,math%3B%20it%E2%80%99s%20a%20living%20schedule
https://graiphic.io/labview-everywhere-onnx/#:~:text=For%20nearly%20four%20decades%2C%20LabVIEW,the%20oscilloscope%20of%20entire%20factories
https://graiphic.io/labview-everywhere-onnx/#:~:text=LabVIEW%20has%20always%20been%20ergonomic,were%20locked%20in%20proprietary%20runtimes
https://graiphic.io/labview-everywhere-onnx/#:~:text=,aerospace%2C%20defense%2C%20and%20automotive%20realistic
https://graiphic.io/labview-everywhere-onnx/#:~:text=On%20a%20chip%2C%20efficiency%20is,was%20built%20for%20this%20world
https://graiphic.io/labview-everywhere-onnx/#:~:text=Imagine%20a%20bottling%20line,delay%2C%20just%20silicon%20and%20graph
https://graiphic.io/labview-everywhere-onnx/#:~:text=,aerospace%2C%20defense%2C%20and%20automotive%20realistic
https://graiphic.io/labview-everywhere-onnx/
https://www.tutorialspoint.com/chainer/chainer-dynamic-vs-static-graphs.htm#:~:text=Chainer%3A%20Dynamic%20vs%20Static%20Graphs,This%20approach%20provides

54

https://www.tutorialspoint.com/chainer/chainer-dynamic-vs-static-graphs.htm
[4] [5] [21] usenix.org
https://www.usenix.org/system/files/osdi23-zhao.pdf
[6] A learnable dynamic scheduling for directed graph jobs flow in ...
https://www.sciencedirect.com/science/article/abs/pii/S0167739X25003425
[7] [22] Research on computing task scheduling method for distributed ...
https://www.nature.com/articles/s41598-025-94068-0
[8] Heterogeneous Graph Neural-Network-Based Scheduling ... - MDPI
https://www.mdpi.com/2076-3417/15/10/5648
[9] [10] [12] [13] [14] [15] [16] [17] KDD 2023: Graph neural networks’ new frontiers -
Amazon Science
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers
[11] Graph Neural Networks for temporal graphs: State of the art ... - arXiv
https://arxiv.org/abs/2302.01018
[20] [PDF] An Automated End-to-End Optimizing Compiler for Deep Learning
https://www.usenix.org/system/files/osdi18-chen.pdf
[23] Comparing Task Graph Scheduling Algorithms: An Adversarial ...
https://arxiv.org/html/2403.07120v1
[24] [26] ONNX | Home
https://onnx.ai/
[25] Qualcomm - QNN | onnxruntime
https://onnxruntime.ai/docs/execution-providers/QNN-ExecutionProvider.html
[27] Making AI Compute Accessible to All, Part 7: Inside the TVM Stack ...
https://medium.com/the-software-frontier/making-ai-compute-accessible-to-all-part-
7-inside-the-tvm-stack-and-its-lasting-impact-88f901788604
[28] Introducing TVM Auto-scheduler (a.k.a. Ansor)
https://tvm.apache.org/2021/03/03/intro-auto-scheduler
[29] Glow: Graph Lowering Compiler Techniques for Neural Network
https://medium.com/geekculture/glow-graph-lowering-compiler-techniques-for-
neural-network-fb1eacbd0508
[30] eIQ® Inference with Glow NN - NXP Semiconductors
https://www.nxp.com/design/design-center/software/eiq-ai-development-
environment/eiq-inference-with-glow-nn:eIQ-Glow
[31] [32] [45] Ensemble Models — NVIDIA Triton Inference Server
https://docs.nvidia.com/deeplearning/triton-inference-server/user-
guide/docs/user_guide/ensemble_models.html
[33] [34] [35] Graph Execution Framework (GXF) - NVIDIA Docs
https://docs.nvidia.com/clara-holoscan/archive/clara-holoscan-0.3.0/gxf/index.html
[36] [37] DeepStream Components — DeepStream documentation
https://docs.nvidia.com/metropolis/deepstream/dev-
guide/text/DS_Zero_Coding_DS_Components.html
[38] Understanding topics — ROS 2 Documentation: Foxy documentation
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-
Topics/Understanding-ROS2-Topics.html
[40] [41] [47] [48] Graiphic Unveils SOTA and ONNX GO at GLA Summit 2025:
Revolutionizing AI Development in LabVIEW - Graiphic
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/

https://www.tutorialspoint.com/chainer/chainer-dynamic-vs-static-graphs.htm
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=This%20paper%20introduces%20a%20systematic,imbalanced%20memory%20usage%20distribution%20across
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=different%20specialized%20compute%20units,23%C3%97%2C%20respectively
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=our%20work%20enables%20the%20synergy,across%20different%20specialized%20compute%20units
https://www.usenix.org/system/files/osdi23-zhao.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0167739X25003425#:~:text=A%20learnable%20dynamic%20scheduling%20for,utilization%20and%20workflow%20execution
https://www.sciencedirect.com/science/article/abs/pii/S0167739X25003425
https://www.nature.com/articles/s41598-025-94068-0#:~:text=,consumption%20under%20response%20time%20constraints
https://www.nature.com/articles/s41598-025-94068-0#:~:text=,consumption%20under%20response%20time%20constraints
https://www.nature.com/articles/s41598-025-94068-0
https://www.mdpi.com/2076-3417/15/10/5648#:~:text=MDPI%20www,combined%20with%20deep%20reinforcement%20learning
https://www.mdpi.com/2076-3417/15/10/5648
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CSo%20people%20asked%20how%20we,connected%20to%20every%20other%20token
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CIf%20every%20node%20can%20communicate,%E2%80%9D
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=Scaling%20graph,clusters
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=you%20want%20to%20solve%20the,the%20training%2C%20accelerate%20the%20inference
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CThere%E2%80%99s%20some%20work%20on%20how,are%20independent%20from%20each%20other
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CThere%20is%20also%20a%20new,inject%20that%20time%20information%20in
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=Efficiency
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CSo%20that%27s%20at%20the%20algorithm,the%20training%2C%20accelerate%20the%20inference
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers
https://arxiv.org/abs/2302.01018#:~:text=arXiv%20arxiv,rigorous%20formalization%20of%20learning
https://arxiv.org/abs/2302.01018
https://www.usenix.org/system/files/osdi18-chen.pdf#:~:text=Learning%20www,portability%20to%20deep%20learning
https://www.usenix.org/system/files/osdi18-chen.pdf
https://arxiv.org/html/2403.07120v1#:~:text=Comparing%20Task%20Graph%20Scheduling%20Algorithms%3A,with%20the%20objective%20of
https://arxiv.org/html/2403.07120v1
https://onnx.ai/#:~:text=ONNX%20,to%20maximize%20performance%20across%20hardware
https://onnx.ai/#:~:text=runtimes%20and%20libraries%20designed%20to,maximize%20performance%20across%20hardware
https://onnx.ai/
https://onnxruntime.ai/docs/execution-providers/QNN-ExecutionProvider.html#:~:text=The%20QNN%20Execution%20Provider%20for,devices%20with%20Qualcomm%20Snapdragon%20SOC%E2%80%99s
https://onnxruntime.ai/docs/execution-providers/QNN-ExecutionProvider.html
https://medium.com/the-software-frontier/making-ai-compute-accessible-to-all-part-7-inside-the-tvm-stack-and-its-lasting-impact-88f901788604#:~:text=,models%20across%20different%20hardware%20platforms
https://medium.com/the-software-frontier/making-ai-compute-accessible-to-all-part-7-inside-the-tvm-stack-and-its-lasting-impact-88f901788604
https://medium.com/the-software-frontier/making-ai-compute-accessible-to-all-part-7-inside-the-tvm-stack-and-its-lasting-impact-88f901788604
https://tvm.apache.org/2021/03/03/intro-auto-scheduler#:~:text=Introducing%20TVM%20Auto,performance%20code%20without%20manual%20templates
https://tvm.apache.org/2021/03/03/intro-auto-scheduler
https://medium.com/geekculture/glow-graph-lowering-compiler-techniques-for-neural-network-fb1eacbd0508#:~:text=Glow%3A%20Graph%20Lowering%20Compiler%20Techniques,generation%20of%20neural%20networks%20graphs
https://medium.com/geekculture/glow-graph-lowering-compiler-techniques-for-neural-network-fb1eacbd0508
https://medium.com/geekculture/glow-graph-lowering-compiler-techniques-for-neural-network-fb1eacbd0508
https://www.nxp.com/design/design-center/software/eiq-ai-development-environment/eiq-inference-with-glow-nn:eIQ-Glow#:~:text=eIQ%C2%AE%20Inference%20with%20Glow%20NN,for%20the%20ONNX%20model%20format
https://www.nxp.com/design/design-center/software/eiq-ai-development-environment/eiq-inference-with-glow-nn:eIQ-Glow
https://www.nxp.com/design/design-center/software/eiq-ai-development-environment/eiq-inference-with-glow-nn:eIQ-Glow
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/ensemble_models.html#:~:text=An%20ensemble%20model%20represents%20a,must%20be%20sent%20to%20Triton
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/ensemble_models.html#:~:text=The%20ensemble%20scheduler%20must%20be,model%20from%20an%20external%20view
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/ensemble_models.html#:~:text=for%20this%20purpose%20can%20avoid,must%20be%20sent%20to%20Triton
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/ensemble_models.html
https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/ensemble_models.html
https://docs.nvidia.com/clara-holoscan/archive/clara-holoscan-0.3.0/gxf/index.html#:~:text=Holoscan%20GXF%20applications%20are%20built,recompile%20any%20extensions%20or%20application
https://docs.nvidia.com/clara-holoscan/archive/clara-holoscan-0.3.0/gxf/index.html#:~:text=,scheduling%2C%20and%20other%20custom%20behavior
https://docs.nvidia.com/clara-holoscan/archive/clara-holoscan-0.3.0/gxf/index.html#:~:text=,copy
https://docs.nvidia.com/clara-holoscan/archive/clara-holoscan-0.3.0/gxf/index.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Zero_Coding_DS_Components.html#:~:text=DeepStream%2FGstreamer%20pipeline%20is%20implemented%20using,types%20used%20in%20DeepStream%20graphs
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Zero_Coding_DS_Components.html#:~:text=This%20interface%20is%20used%20by,ordinates%20of%20detected%20objects
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Zero_Coding_DS_Components.html
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Zero_Coding_DS_Components.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html#:~:text=ROS%202%20breaks%20complex%20systems,for%20nodes%20to%20exchange%20messages
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://docs.ros.org/en/foxy/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=SOTA%20,or%20any%20external%20conversion%20tools
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=ONNX%20GO%3A%20Going%20Further%20in,Graph%20Orchestration
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=Redefining%20the%20Role%20of%20ONNX,in%20Deep%20Learning
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/#:~:text=Looking%20ahead%2C%20Graiphic%20is%20preparing,general%20processing%2C%20and%20hardware%20I%2FO
https://graiphic.io/gla-summit-2025-sota-labview-onnx-go/

55

[42] Exercising Vitis AI Applications on Alpha Data Boards V1.0
http://alpha-data.com/pdfs/ad-an-0131_v1_0.pdf
[43] [44] Developing a BLAS library for the AMD AI Engine Extended Abstract
https://arxiv.org/html/2410.00825v1
[49] Deploy without the LabVIEW Runtime, powered by ONNX GO HW
https://graiphic.io/labview-everywhere-onnx-go-hw/
[50] Edge AI Archives - Graiphic
https://graiphic.io/tag/edge-ai/

http://alpha-data.com/pdfs/ad-an-0131_v1_0.pdf#:~:text=such%20as%20VGG%2C%20ResNet%2C%20GoogleNet%2C,Vitis%20Base%20Platform
http://alpha-data.com/pdfs/ad-an-0131_v1_0.pdf
https://arxiv.org/html/2410.00825v1#:~:text=The%20AIEs%20can%20be%20programmed,RTL
https://arxiv.org/html/2410.00825v1#:~:text=The%20AIEs%20can%20be%20programmed,RTL
https://arxiv.org/html/2410.00825v1
https://graiphic.io/labview-everywhere-onnx-go-hw/#:~:text=What%20if%20LabVIEW%20deployed%20without,and%20I%2FO%20across%20targets
https://graiphic.io/labview-everywhere-onnx-go-hw/
https://graiphic.io/tag/edge-ai/#:~:text=Edge%20AI%20Archives%20,read%20more
https://graiphic.io/tag/edge-ai/

