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Executive Summary 
ONNX has established itself as the de facto standard for portable AI inference, allowing 
models to run efficiently across CPUs, GPUs, FPGAs and NPUs. Graiphic’s work builds 
directly on this foundation and extends ONNX into a much broader role: not only a format 
for inference, but a complete framework for orchestrating AI, logic and hardware in a 
unified and transparent way. 
This evolution has unfolded in three major steps. First, we enabled training workflows 
inside ONNX, combined with LabVIEW orchestration, which are already used in Graiphic’s 
Deep Learning Toolkit. Second, we introduced ONNX GO, an orchestration layer that 
supports control structures such as conditionals, loops and runtime branching, and 
which is already deployed in the LabVIEW Accelerator Toolkit. The third step, which this 
document focuses on, is ONNX GO HW: a new layer that integrates hardware primitives 
such as DMA transfers, GPIO, ADC/DAC and timers directly into ONNX graphs. 
The goal of ONNX GO HW is to make hardware orchestration as seamless and 
standardized as AI inference itself. The analogy with NI’s DAQmx is intentional: just as 
DAQmx unified hardware configuration and access through a single interface, ONNX GO 
HW provides an open and portable representation of hardware tasks that can be defined 
and scheduled inside ONNX graphs. Unlike DAQmx, this approach is not tied to 
proprietary APIs or devices but remains compatible across multiple runtimes and 
platforms. 
LabVIEW plays a central role as the natural cockpit for this technology. Engineers can 
visually design, deploy and monitor systems that combine artificial intelligence with real-
world hardware control, all within a single workflow. This creates a powerful bridge 
between abstract AI models and physical systems, with immediate benefits in test and 
measurement, robotics, industrial automation, aerospace and defense. 
ONNX GO HW introduces a new paradigm in execution. By embedding hardware 
orchestration into standardized graphs, it transforms ONNX from a static description of 
models into a dynamic and auditable framework capable of managing the entire lifecycle 
of intelligent systems. 
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From a static file to a living graph 

Every ONNX model is a little play. The cast are nodes, the props are tensors, and the 
script is the graph. Most of us only hire the math stars that do convolutions, matmuls, and 
activations. Three quiet actors wait in the wings: If, Loop, and Scan. They rarely get called 
when we only do classic deep learning inference, yet they hold the keys to choreography. 
With them, a graph can describe not just what to compute, but when to compute and how 
often to repeat. That is where the story gets interesting. 

We call this idea GO, for graph orchestration. GO is the goal of turning ONNX from a static 
description into a dynamic technology. The artifact stays the same, yet the way we use it 
changes. ONNX brings a universal, interoperable format. ONNX Runtime brings an 
efficient execution engine. Together they already run fast on many targets. With GO, the 
graph also carries schedules and control flow in a first-class way, so you coordinate 
learning loops, evaluation passes, and model lifecycle without leaving the ONNX world. 

There is a catch. ONNX today shines as a file format and as a runtime target, yet it lacks 
a native editor. You can convert from popular frameworks, you can execute with ONNX 
Runtime, but you cannot comfortably import, edit, and create ONNX graphs without going 
back to third party toolchains. That dependency keeps ONNX as an excellent tool, not yet 
a complete graph computing framework. It slows innovation because the ideas must pass 
through a different language before they become ONNX. 

This is the gap Graiphic is closing. We keep ONNX as the single source of truth, expose 
both levels of abstraction, and make the control flow nodes easy to use. Engineers can 
work at a Keras style layer level. Researchers can sculpt at the node level. Everyone edits 
the same graph, saves the same format, and benefits from the same runtime. 

ONNX in plain language 

Before we orchestrate anything, let us make the building blocks feel familiar. ONNX 
is an open way to write a computation as a graph. A node is an operation. An edge carries 
a tensor from one node to the next. Some tensors are not inputs at all but weights stored 
inside the model. Each node has attributes that set its behavior, for example a kernel size 
or an activation choice. Put these pieces together and you have a recipe the computer 
can follow step by step. 

Think of ONNX as sheet music. The notes are operations like MatMul, Conv, Add, Relu. 
The bars are tensors that flow across the page. The tempo is set by shapes and types that 
tell the runtime how large the arrays are and how they line up in memory. A model file 
simply packages the score with its instruments. It contains the graph, the weights, the 
operator set version, and a little metadata such as names and documentation. You can 
pass this file between tools and keep meaning intact. 

Why is this useful beyond conversion? Because a graph is precise and inspectable. You 
can open it, count the tensors, check the shapes, and see exactly how data moves. You 
can split it in two, reuse a prefix, or swap a small part without touching the rest. You can 
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run it on a laptop, a workstation, or a small board and expect the same logical behavior. 
When a team says one source of truth, this is what they mean. 

If, Loop, and Scan enable control flow inside the graph, essential for orchestration and 
training logic. They’re already part of ONNX and will be key to express full execution 
schedules. If choose a path based on a condition. Loop repeats a subgraph and carries 
state across steps. Scan walks over a sequence and collects results. Most people ignore 
them when they only deploy a fixed network, yet they make the format future ready. They 
are the handles we will use later to express schedules and learning cycles inside the same 
artifact. 

A final detail completes the picture. ONNX is neutral about taste. It does not force a style 
like layers only or operators only. You can treat the graph as a high-level model if that is 
the right abstraction for an engineer, or you can treat it as a set of fine-grained operators 
if you are a researcher crafting something bespoke. The file does not change, only the 
editor you prefer. 

Cheat sheet 
▪ Node: a single operation that consumes and produces tensors 
▪ Tensor: an array with a shape and a data type 
▪ Initializer: a tensor stored in the model, usually a weight 
▪ Attribute: a small setting attached to a node 
▪ Opset: the versioned catalog of available operators 

ONNX Runtime in practice 

Now that the score is clear, meet the conductor. ONNX Runtime reads the graph, plans 
the work, and plays it efficiently on real hardware. It chooses kernels, arranges memory 
so tensors land where they should, and removes extra steps by fusing compatible nodes. 
The result is a compiled session that you can call many times with stable latency and a 
predictable footprint. 

Think of execution as a three-part routine. First comes analysis. The runtime checks 
shapes and data types, folds constants, and prunes dead branches. Second comes 
partitioning. Subgraphs are assigned to Execution Providers that know how to run them 
fast, for example above the native CPU, CUDA and TensorRT for NVIDIA, oneDNN  and 
OpenVINO for Intel, ROCm and VitisAI for AMD, and DirectML for Windows GPUs. Third 
comes scheduling. The runtime builds an execution plan that minimizes copies, aligns 
layouts, and reuses memory arenas so nothing is allocated in the hot path. 

A useful detail is that the graph stays the source of truth. You can inspect the optimized 
graph, see which parts got fused, and verify exactly which provider runs which segment. 
If a device is missing, the same artifact still runs on a plain CPU provider with the same 
logical behavior, just at a different speed, that’s what we call the Fallback mechanism. 
This keeps experiments honest and production portable. 

Here is a simple way to place ONNX Runtime in your mental map. 
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Library vs runtime, in one glance 

▪ A library gives you individual operations such as MatMul or Conv (examples: 
CUDA, OneDNN, RocM, DirectML) 

▪ A runtime takes a whole graph, compiles it end to end, and decides how and 
where to run each part (examples: TensorRT, OpenVINO Runtime, VitisAI 
Runtime, ONNX Runtime) 

▪ Libraries are the instruments, the runtime is the conductor 
▪ ONNX Runtime integrates with many runtimes and libraries via Execution 

Providers and falls back to the CPU provider when needed 

Two side effects matter in practice. Efficiency improves because the runtime can fuse 
chains of operations and keep data in the right format between them. Energy improves 
because fewer copies and fewer cache misses translate into less wasted work. Both 
effects show up the moment you repeat inference at scale. 

Compiler strategy: IR-last today, IR-first optional tomorrow. 
An Intermediate Representation (IR) is the neutral “sheet music” of a program that 
enables analysis, optimization, and lowering to hardware. Today we favor an IR-last path 
with ONNX Runtime: the ONNX graph remains the source of truth while the runtime 
performs graph-level optimizations and partitions subgraphs to hardware Execution 
Providers (TensorRT, OpenVINO, DirectML, ROCm, …). This maximizes portability, 
coverage, and time-to-first-inference. In parallel, we open an IR-first lane with MLIR: 
models are lowered through dialects (e.g., ONNX or StableHLO) and compiled end-to-
end (e.g., via IREE or OpenXLA) for ahead-of-time specialization, tight latency budgets, 
and target-specific scheduling. Bridges (ONNX-MLIR, StableHLO) make both lanes 
interoperable. Net effect: under the same LabVIEW GUI and orchestration, users can pick 
runtime breadth (IR-last) or compiler-grade specialization (IR-first) per deployment. 

 
Dual IR Strategy — ORT (IR-last) vs MLIR (IR-first) under LabVIEW Orchestration 
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Graiphic deliberately starts with an IR-last path built on ONNX Runtime: the ONNX file 
remains the single source of truth, while the runtime performs graph-level optimizations 
and partitions subgraphs to hardware Execution Providers before scheduling them 
efficiently. This maximizes portability, coverage, and time-to-first-inference. Next, we will 
expose an optional IR-first lane based on MLIR (e.g., IREE/OpenXLA). When targets or 
workloads benefit from ahead-of-time specialization, static-shape lowering, or custom 
dialects, the same ONNX graph can be lowered to MLIR dialects and compiled end-to-
end to native executables. Users will choose per deployment between the ORT path (EP-
driven runtime) and the MLIR path (compiler pipeline), under the same LabVIEW cockpit, 
device profiles, and monitoring plane. This dual strategy keeps our portability-first 
promise while opening the door to compiler-grade determinism and specialization 
where it matters. 

Graph computing as a quiet revolution 

Once you see a model as a graph, you start seeing most workflows as graphs. A graph is a 
contract that lists the steps, the data that flows between them, and the rules that govern 
the journey. It is transparent, easy to inspect, and easy to test. You can run a single 
subgraph to debug an issue, then run the full plan with the confidence that the behavior 
will match. This mindset turns scattered scripts into a single artifact that you can reason 
about. 

With If, Loop, and Scan, graphs can carry full training, evaluation, and control loops — all 
in a reproducible, inspectable way. 

Graphs also make optimization a first-class activity. Because the plan is explicit, a 
runtime can fuse operations, reuse buffers, and select precisions that fit the budget. 
Because the plan is versioned, a team can review changes, compare metrics, and roll 
back without guessing which script or notebook drifted. Provenance stops being a 
headache and turns into a property of the file. 

This is why we describe GO as graph orchestration. The idea is simple. Keep one artifact. 
Put both computation and schedule inside it. Let the runtime turn that plan into an 
execution that is fast and predictable on real machines. You gain portability, you gain 
performance, and you gain a common language between engineers and researchers. 
 

Micro checklist for graph ready work 
▪ Preprocessing and metrics belong in the graph when possible 
▪ Control flow is explicit, not hidden in outer scripts 
▪ Seeds, shapes, and dtypes are recorded for reproducibility 
▪ Subgraphs are modular so teams can reuse and swap them 
▪ The optimized graph is inspected like code 

If graphs make complex systems visible, LabVIEW proved it decades ago by turning dataflow 
into an everyday tool for engineers. Let us rewind to see why that matters now. 
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Back to the 80s, NI and the birth of LabVIEW 

Picture the mid-Eighties. Personal computers get a proper graphical interface. Engineers 
want instruments to talk to software without wrestling with arcane drivers. National 
Instruments sells the boards and sees the gap.  
In Austin, three engineers, James Truchard, Jeff 
Kodosky, and Bill Nowlin, have already founded 
National Instruments in 1976 with a simple 
focus: connect instruments to computers so 
that scientists and engineers can get results 
faster. Early products revolve around GPIB and 
measurement cards, yet the deeper ambition is 
to make the computer feel like an instrument 
that you can compose and recompose at will. 

Jeff Kodosky has a simple question 
that sounds audacious in that 
context. What if programming for 
measurement and control looked 
like drawing a circuit that runs? 

LabVIEW is the answer. The front 
panel is where you place knobs, 
charts, and indicators. The block 
diagram is where you wire boxes that 
do work. Data flows along wires and 
triggers execution when inputs are 
ready. The result feels like an 

oscilloscope pointed at your own 
program. You click run and watch 

values ripple through the graph in real time. You correct mistakes by looking, not guessing. 

As LabVIEW made dataflow tangible, NI solved the other half of the problem with a unified 
driver stack: NI-DAQmx. Instead of coding per-board quirks, engineers declared what 
they wanted, sample clock, channel list, trigger, buffer size and DAQmx handled how to 
talk to multiplexed ADCs, counters, timers and DMA behind the scenes. Critically, the 
DAQmx task model mapped cleanly to LabVIEW’s block diagram: configure once, start, 
read/write, stop, with deterministic timing and good diagnostics. That pairing “visual 
dataflow + a portable hardware abstraction” is the historical proof that orchestration and 
I/O can live in one mental model. GO HW borrows that lesson: keep the graph as the plan, 
keep a clean runtime, and expose hardware primitives as first-class nodes instead of ad-
hoc glue. 

Control is part of the picture from day one. If, For, and While sit beside math nodes and 
filters. They let you express choices, loops, and orderly repetition with the same visual 

James Truchard, Jeff Kodosky and Bill Nowlin James Truchard, Jeff Kodosky and Bill Nowlin 

LabVIEW While Loop abstraction within it’s diagram IDE 
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clarity. The idea is not to hide complexity. The idea is to make it visible so teams can 
reason about behavior, timing, and state without reading a wall of text. 

Why does this matter to our story about ONNX. Because it proves that graphs are a 
practical way to build and operate complex systems. It shows that an IDE can help non-
specialists work confidently with powerful machinery when the model of computation 
matches how they think. It also shows that orchestration is not a footnote. It is the method 
that turns a collection of operations into a working system. 
 

LabVIEW in one minute 
▪ 1986 
▪ Pioneered the industrial application of graph computing through LabVIEW Visual 

dataflow, not syntax rules 
▪ Two synchronized views, front panel and block diagram 
▪ Live execution, you can watch and debug 
▪ Control structures that make behavior explicit 

That same clarity is what we wanted for modern AI workflows, which led to our first toolkit 
and the lessons that shaped the pivot. 

Graiphic chapter 1 — A Keras style toolkit that hit two walls 

HAIBAL (2022), Our first LabVIEW deep learning toolkit spoke fluent Keras. It offered 
layers you could stack, an H5 file you could save, and a clean mental model that many 
engineers already knew. That choice made adoption easy, yet it hid a mismatch. Keras 
layers are friendly abstractions, while ONNX and modern runtimes reason in finer grained 
nodes. PyTorch and TensorFlow can export models as operator level graphs. Our layer 
centric design could not round trip neatly with that world. Converters had to guess how a 
stack of layers mapped to a set of low-level ops. Small gaps turned into friction. 

The second wall was speed. We executed through the LabVIEW runtime with a light 
CUDA bridge. It worked and it was ergonomic, but it was not built for the scale and 
cadence of tensor compute. The hot path did too many small calls. Memory moved more 
than it should. Kernels could not fuse across the layer boundaries we had chosen. When 
we compared common models with mainstream frameworks, we saw the gap in latency 
and throughput. 

Both walls taught the same lesson. The file format and the execution engine must sit at 
the center. An editor that feels good is not enough if the artifact is not native to the 
ecosystem you target. A runtime that feels integrated is not enough if it cannot plan whole 
graphs and keep the hot path tight. We needed to keep the ergonomics of layers for 
engineers, open the door to node level editing for researchers, and anchor the truth in an 
ONNX file that any tool could read. 
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What we kept and what we changed 
• Kept the clarity of layers for quick prototyping 
• Added node level access for custom research work 
• Replaced H5 as the primary artifact with ONNX as the single source of truth 
• Moved execution from the LabVIEW runtime to an engine built for graphs 

Graiphic chapter 2 — one file, one engine, one cockpit 

Editors change, hardware changes, teams change. The artifact stays the same and the 
engine keeps it honest. 

We support two lanes without splitting the road. In layer mode an engineer builds with 
friendly blocks that feel like Keras. In node mode a researcher edits fine grained operators 
and custom subgraphs. Both lanes write to the same ONNX graph, with the same shapes, 
the same weights, the same metadata. You can start in layers for speed, drop to nodes for 
precision, and never leave the file that ships. 

Performance stops being an accident and becomes a property of the build. ONNX 
Runtime compiles the graph into a session, fuses compatible chains, allocates memory 
arenas, and plans formats so tensors do not bounce around. You call the session many 
times with the same inputs, and the hot path stays tight. Latency becomes predictable, 
throughput scales, energy stops leaking into copies you did not ask for. 

The day-to-day experience improves too. The ONNX file is versioned like code. Diffs are 
meaningful because the graph is declarative. Tests can run on a CPU provider during 
development and switch to an accelerator provider in staging with the same logical 
behavior. When something regresses, you inspect the optimized graph and see what 
changed rather than guess which script drifted. 

Graiphic did not approach ONNX as a fixed standard limited to AI inference. From the 
beginning, we considered ONNX as a foundation for a broader category of graph-based 
execution systems. This perspective led to a series of structured extensions and 
contributions that progressively expanded the ONNX Runtime ecosystem. 
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The first breakthrough was the integration of training workflows directly into ONNX 
graphs. Through our internal platform SOTA, we demonstrated that neural network 
training, including backpropagation, could be described and executed within ONNX 
Runtime. This eliminated the need for Python training loops or external scripting, proving 
that ONNX could support dynamic learning operations rather than being limited to static 
inference. 

 

 

Building on this foundation, we introduced ONNX GO, a framework for Graph 
Orchestration. ONNX GO extended the ONNX specification with control flow constructs 
such as conditional branching (If), iteration (Loop), and structured scans (Scan). These 
additions allowed ONNX graphs to express general-purpose logic, including decision 
trees, processing pipelines, and reactive system behaviors. 

To make these capabilities accessible, we integrated ONNX GO into LabVIEW, creating a 
visual environment for graph composition and execution. Engineers could now design, 
modify, and run ONNX-based systems across various platforms using a graphical 
interface that supports modularity, clarity, and live debugging. 

This progression from inference, to training, to full orchestration laid the groundwork for 
the next step. ONNX GO HW emerged as a natural extension, introducing hardware-level 
access as a native part of ONNX graphs. It completes the transformation of ONNX into a 
universal execution layer capable of describing both software logic and physical 
hardware control in a single, portable format. 

ONNX Evolution: From AI Inference to Full Graph-Based System Orchestration 
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 A small quality of life loop closes the circle. Import a legacy model, normalize it to a clean ONNX graph, run quick shape checks, auto 
generate minimal docs from operator metadata, and compile a warm session for your target. The file becomes the contract. The runtime 
becomes the guarantee. 

Rules of engagement 
• One ONNX bundle is the source of truth for models and transforms 
• Treat layer mode as a convenience, not a trap 
• Keep pre and post processing in the graph when possible 
• Inspect the optimized graph like you review code 
• Compile once per target for stable memory and timing 

The editor reads left to right. In the purple area “Model definition” you build the ONNX graph with blocks (Inputs, Dense, Add, Output) and 
keep a clean ONNX artifact. In the blue area “Model Execution” you open an ONNX Runtime session from that model, inject batched 
inputs, run the forward pass, and collect the outputs. The same ONNX file drives both validation and execution; only the view changes 
from authoring to running. 

Graiphic choice - LabVIEW ONNX 
editor: from model definition to 
runtime execution (Diagram view) 
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Graphs made complex systems visible. The next step is to let the same graph do more 
than predict. From inference to training and orchestration, it is still a graph. 

From inference to training and 
orchestration, still a graph 

We keep one artifact, the ONNX graph, and we 
teach it new moves. Conceptually a training graph 
adds a loss, gradients, and an optimizer to the 
forward path. These pieces fit the ONNX mindset 
and keep the artifact versionable and auditable. 
They make training a plan you can read instead of a 
pile of scripts. 

Here is the practical nuance in our current stack. 
Today the orchestration loop lives in LabVIEW, not inside the ONNX graph. LabVIEW 
plays the role of If, Loop, and Scan in its own dataflow. We tick the loop, feed inputs to the 
graph, run one forward pass, collect outputs, and repeat. This keeps high level control 
familiar and debuggable while we gradually move schedule logic into ONNX when it is 
mature enough. The diagrams you shared show this clearly. The model is defined once, a 
session is created, and LabVIEW drives the sequence one inference at a time. 

We support three session flavors in ONNX Runtime so teams choose the right granularity 
without changing tools: 

▪ Inference session Classic forward only. Use for serving and evaluation. 
▪ Training session in fit mode (green wires) Forward, loss, backward, and update 

handled as a single callable. 
▪ Academic session Forward and backward are exposed separately so you can inspect 

tensors, plug custom losses, or prototype research ideas. 

This hybrid phase is intentional. It delivers 
value now and sets a clean path to full in graph 
orchestration later. You already get compiled 
sessions, fused kernels, and stable memory 
on each target. You already keep 
preprocessing and metrics close to the model 
so runs are reproducible. You already ship a 
single ONNX file that moves from experiment 

to evaluation to serving. What changes next is where the schedule lives. We will gradually 

LabVIEW Diagram Orchestration of ONNX 
Runtime Training Inference 

LabVIEW Training Inference functionality 

LabVIEW ONNX editor: Palette 
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encode epoch loops, mini batch steps, and early stopping with ONNX control flow so the 
artifact carries both computation and cadence. 

Micro callout 
▪ Today: LabVIEW owns the loop and calls ONNX Runtime each tick 
▪ Tomorrow: control flow migrates into ONNX using If, Loop, and Scan 
▪ Always: one ONNX file, one compiled session per target, the same truth in every 

phase 

The NI Connect moment 

We arrived at NI Connect with one story to tell. A clean LabVIEW experience on top of 
ONNX and ONNX Runtime for deep learning, with the orchestration loop living in 
LabVIEW. The first discussion with NI engineers changed the scope in the best possible 
way. If the graph can express complex deep learning, it can also express simpler building 
blocks from the LabVIEW palette. That idea kicked off the Accelerator Toolkit. The goal 
was straightforward. Generalize ONNX beyond deep learning and use ONNX Runtime to 
execute any compute graph efficiently. 

Results followed quickly. A matrix multiplication benchmark on CPU showed the 
Accelerator beating native LabVIEW by a wide margin. At size 8000 the time ratio reached 
about 5.5 in our test VI, with ten iterations per size for fair timing. The same pattern 
appeared in computer vision. A Sobel edge detector built as an ONNX graph and run with 
ONNX Runtime outpaced an OpenCV implementation by roughly 30 to 40 percent 
depending on resolution. These two measurements gave us confidence that the 
generalized graph route was sound. The videos and screenshots we shared with NI 
captured the effect clearly. 

The second moment came the next day with an NI engineer who had missed the first 
meeting. Your idea to generalize graphs is good, he said, but how do you control hardware 
signals with this technology. The question landed and stayed. It reframed the problem 
from pure acceleration to timing and alignment with the real world. 

The timeline matters. In May we had only the deep learning toolkit and a LabVIEW driven 
loop that fed the graph and called ONNX Runtime step by step. In July we shipped the 
Accelerator Toolkit to prove that generalized graphs run fast for pre and post processing 
and for standalone math. In August we began shaping the hardware path. The order is 

Comparison between OpenCV and ONNX runtime time execution performance on Sobel Edge 
Detector on an CPU execution provider (ORT : ONNX Runtime) 
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deliberate. Show speed first, then bring timing into focus, then extend the model to the 
physical layer. Step by step. 

Two ideas were born in those conversations with NI. First, treat ONNX as a general 
graph that can execute efficiently beyond deep learning. Second, answer the hardware 
question with a design that makes timing and control as explicit as the math. The first idea 
is already in the product. The second is the seed we are growing now. 

Generalizing the graph is only half the story. To act on the physical world, we need to speak 
the language of chips. A short tour of SoCs makes the stakes concrete. 

SoC basics without the jargon 

A System on Chip is a small city 
on a slice of silicon. You get a 
CPU for general work, a GPU or 
NPU for heavy math, memory 
blocks, and the streets that 
connect them called buses. 
Around that city sit the ports that 
touch the world. General purpose 
pins switch lights or read buttons. 
Converters turn voltages into 
numbers and back. Timers keep 
time. Interrupts wake the city 
when something important 
happens. Put it together and you 
have a computer that can sense, 
think, and act on its own. 

Think in three layers. At the edge 
are signals you can touch. GPIO 

flips digital inputs and outputs. ADC reads analog values like pressure or vibration. DAC 
writes analog values like a reference voltage. PWM creates precise pulses for motors and 
LEDs. Timers and counters measure durations and frequencies. Interrupts say stop what 
you are doing and look here. In the middle is data movement. Direct Memory Access 
moves blocks of data without bothering the CPU. Small shared buffers act like mailboxes 
between parts of the chip. At the core sits compute. The CPU runs control logic. The GPU 
or NPU crunches arrays for vision or language. Caches and formats decide how fast the 
math flows. 

System on Chip (SOC) high level design  
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Why does this matter for graphs. Because an ONNX graph can run where the signals 
originate. A camera feeds a stream into memory. 
DMA places frames without copies. The runtime 
reads tensors in place. The decision lands while the 
belt still moves. Latency drops because you do not 
ship data across a network. Energy drops because 
you do not spin big servers for tiny decisions. 
Portability holds because the same graph can 
target different SoCs through different providers 
while keeping the same logic. 

Two pictures make it concrete. In a bottling line a 
tiny board watches caps and fills. A sensor fires, a frame arrives, a model checks the 
meniscus, and a reject arm nudges a faulty bottle. The action happens in tens of 
milliseconds. In a smart street cabinet a board reads weather and traffic sensors, adjusts 
timing for a crossing, and reports summaries every minute. No one babysits the box. The 
graph is the script and the chip runs the play. 

Keep a simple mental kit for SoCs. 
• Signals: GPIO, ADC, DAC, PWM, timers, interrupts 
• Movement: DMA, shared buffers, ring queues 
• Compute: CPU for logic, GPU or NPU for arrays 
• Wins: low latency, low energy, same logic on many boards 

State of the Art in Graph Computing and Hardware 
Orchestration (2021–2025) 

Introduction 
Graph-based computing has become a cornerstone of modern AI systems. Neural 
networks are naturally expressed as computational graphs where nodes represent 
operations and edges represent data flows (tensors). Beyond model inference, many AI 
workflows – from sensor acquisition to decision-making and actuation – can be 
modeled as dataflow graphs or directed acyclic graphs (DAGs). Representing workflows 
in this form enables global optimization, reproducibility, parallelism, and a unified view 
of the system. 

Between 2021 and 2025, major advances have been made in graph compilers, 
distributed DAG schedulers, hardware-specific runtimes, and pipeline orchestrators. 
Yet, none of the existing approaches fully unifies AI computation, orchestration logic, 
and hardware I/O under a single portable artifact. This section surveys key academic 
and industrial efforts and highlights the gap that motivates the development of ONNX 
GO HW. 

Nvidia Jetson Orin SOC  
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Graph Compilers and Runtimes 
Modern compilers and runtimes transform computation graphs into optimized 
executables tailored to each hardware target. 

• ONNX Runtime (ORT) – A cross-platform engine for executing ONNX graphs with 
kernel fusion, memory planning, and multiple Execution Providers (CUDA, 
TensorRT, oneDNN, DirectML, OpenVINO, etc.). Widely used in production for 
portability and performance. 

• Apache TVM – An open-source compiler stack applying graph-level and tensor-
level optimizations, including auto-scheduling (Ansor). Supports CPUs, GPUs, 
microcontrollers, and custom ASICs. 

• Google XLA / MLIR – A compiler infrastructure generating optimized HLO IR for 
CPUs, GPUs, and TPUs, excelling at static graph optimizations. 

• NVIDIA TensorRT – A high-performance runtime for NVIDIA GPUs, focused on 
inference, with aggressive optimizations (layer fusion, quantization). 

• Meta Glow – A graph-lowering compiler producing optimized code for 
heterogeneous devices, though with declining adoption compared to ORT/TVM. 

Strength: excellent inference performance. 
Limitation: focus on neural nets only; pre/post-processing, control flow, and hardware 
orchestration remain external. 

Pipeline Orchestration Frameworks 
Some frameworks address end-to-end workflows by connecting models with other 
processing nodes. 

• NVIDIA Triton Inference Server – Supports ensembles of models connected as 
DAGs, with batching and scheduling. Optimized for serving at scale, not 
embedded control. 

• NVIDIA Holoscan (GXF) – Graph Execution Framework for real-time sensor/AI 
pipelines on Jetson/Orin. Provides zero-copy buffers and deterministic 
scheduling, but mainly tied to NVIDIA hardware. 

• NVIDIA DeepStream – A graph-driven multimedia pipeline framework based on 
GStreamer, targeting video analytics. 

• ROS 2 – Widely used in robotics, representing systems as graphs of nodes 
communicating via DDS. Strong for modularity, but determinism and real-time 
guarantees remain challenging. 

• LabVIEW – The precursor of visual graph-based programming, with native 
support for control and I/O. Historically limited by dependence on proprietary 
runtimes and lack of AI-native integration. 
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Strength: integration of multiple components (sensing, AI, control). 
Limitation: models are often treated as black boxes; no unified graph artifact combining 
AI and I/O. 

Hardware-Specific SDKs and DSLs 
Vendors have created specialized graph-oriented SDKs to maximize performance on 
their chips. 

• AMD Vitis AI – Compiles models into FPGA DPUs, enabling efficient inference 
with quantization. 

• Xilinx Adaptive Dataflow (ADF) – DSL for programming Versal AI Engines as 
graphs of kernels and streams. 

• Qualcomm QNN SDK – Constructs hardware-specific graphs for Snapdragon 
SoCs, mapping to DSPs, NPUs, and GPUs. 

• NVIDIA CUDA Graphs – API to reduce GPU kernel launch overhead by chaining 
kernels as graphs. 

• Intel oneAPI / OpenVINO – Graph IRs optimized for Intel CPUs, GPUs, and VPUs. 
Strength: hardware efficiency, near-ASIC performance. 
Limitation: vendor lock-in; portability and orchestration across vendors not supported. 

Limitations of the Current State of the Art 
Despite the breadth of solutions, several gaps remain: 

1. Fragmentation – Inference engines, orchestrators, and hardware SDKs remain 
siloed, requiring glue code. 

2. No unified artifact – AI models, control loops, and I/O logic are spread across 
different runtimes. 

3. Vendor lock-in – Each hardware vendor exposes its own graph DSL, reducing 
portability. 

4. Lack of determinism – Few frameworks address real-time guarantees, safety 
profiles, or certifiability for aerospace/automotive/defense. 

Transition to GO HW 
These gaps open the path for ONNX GO HW: 

• One graph artifact (ONNX) for computation, orchestration, and I/O. 
• One runtime engine (ONNX Runtime) that schedules both math and hardware 

nodes. 
• One cockpit (LabVIEW-style IDE) to author, configure, deploy, and monitor. 

This unified approach is portable across vendors, auditable for safety-critical domains, 
and efficient for embedded deployment. 



 

20 
 

Comparative Snapshot 
Framework 

/ SDK AI Models Control Flow Hardware I/O Portability Real-Time / Safety 

ONNX 
Runtime Yes Limited 

(If/Loop) No High Partial (fallbacks) 

Apache TVM Yes No No High No 
TensorRT Yes (GPU) No No NVIDIA-only No 

ROS 2 Yes (as external 
node) Yes Yes (via drivers) High Limited determinism 

Holoscan / 
DeepStream Yes Partial Yes (streams) NVIDIA-only Some deterministic 

scheduling 
Vitis AI / 
QNN / ADF 

Yes No Partial Vendor-only Limited 

GO HW 
(proposed) Yes Yes 

(If/Loop/Scan) 
Yes (GPIO, DMA, 
ADC/DAC, PWM) 

High (via Execution 
Providers) Yes  

Closing Sentence 
The fragmentation of today’s tools highlights the need for a unified solution. This gap 
motivates GO HW, a concrete path from static description to dynamic technology. 

GO HW, a concrete path from static description to 
dynamic technology 
GO HW stands for Graph Orchestration for Hardware. It turns a single ONNX graph into 
a living control loop that runs on real chips. The artifact stays ONNX. The engine stays 
ONNX Runtime. The cockpit stays LabVIEW. What changes is that hardware primitives 
become first-class nodes and timing becomes part of the plan. 

Take the thought experiment and give it a name. GO HW is our way to turn ONNX from 
a static file into a living plan. ONNX stays the language that describes the graph. ONNX 
Runtime stays the engine that compiles and executes the plan. LabVIEW stays the cockpit 
where people think in graphs. GO is the glue that makes schedules, policies, and lifecycle 
first class citizens inside the same artifact. 

The change is simple to feel. Instead of juggling scripts and private formats, teams keep 
one ONNX bundle that carries model structure, training logic when needed, evaluation 
flows, and housekeeping such as metrics and checkpoints. The runtime sees the whole 
plan, fuses what it can, sizes memory once, and delivers a session that behaves the same 
every time you call it. Reviews become graph diffs. Tests become graph runs. Rollbacks 
become file swaps. 

We do not invent a new file or a new engine. We make better use of what exists. 
Control flow nodes like If, Loop, and Scan are not extras for edge cases. They are the 
handles that let you encode learning loops, curriculum choices, early stopping, and 
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reporting without leaving the ONNX world. The result is a clean pipeline that is portable, 
auditable, and friendly to both engineers and researchers. 

Ergonomics remains a first-class concern. Layer mode gives practitioners the speed of 
Keras style building blocks. Node mode gives researchers fine control at the operator 
level. Both write to the same ONNX graph. Both compile to the same session. Both benefit 
from the same runtime optimizations. Your team chooses the view. The artifact stays one. 

Three promises of GO HW 
• One artifact for the lifecycle 
• One engine for performance and portability 
• One cockpit that makes graphs natural to author and reason about 

GO HW on SoCs, author, configure, deploy, monitor 

Think of GO HW as a four-step groove. You author a graph, you configure a target, you 
deploy a compiled plan, you monitor the run. Same artifact, same engine, different 
boards. 

Author. Build the model as an ONNX graph in the LabVIEW cockpit. Engineers use layer 
blocks when they want speed. Researchers switch to node level when they want 
precision. Pre and post processing live in the same graph when it makes sense. Shapes, 
dtypes, and opset are checked early so the file is clean before you touch hardware. 

Configure. Pick a board and load its device profile. The profile describes memory, 
supported providers, and practical limits such as how many concurrent streams make 
sense. The tool suggests a partitioning plan across providers. You confirm what runs on 
CPU, what runs on GPU or NPU, and what the Hardware EP will bind when hardware 
primitives are present. One click produces a plan you can review. 

Deploy. ONNX Runtime compiles the graph into a session for that SoC. Kernels that fit 
together are fused. Memory arenas are sized to avoid hot path allocations. Formats are 
aligned so tensors do not ping pong between layouts. You ship a compact bundle that 
contains the graph, the compiled artifacts, and a small manifest. The device starts the 
session and keeps it resident. 

Monitor. A tiny agent speaks gRPC for a side channel. Operators can read metrics, watch 
a few tensor taps, and adjust whitelisted parameters without touching the hot path. The 
session keeps its timing and memory stable. The agent handles logs, health checks, and 
safe restarts. You can stage a new graph, switch over, and roll back with short commands. 
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Here is a simple way to keep the loop healthy. 

Happy path checklist 
• Validate shapes and opset at author time 
• Compile once per target and reuse the session 
• Keep preprocessing and metrics in the graph when practical 
• Track versions with a clean semantic tag and a short changelog 
• Warm up the session after boot and record a baseline 

A small example makes it real. A sorter runs on a Jetson today and moves to a Zynq board 
next quarter. You do not rewrite the logic. You open the same ONNX file, select a different 
device profile, compile for the new target, and deploy. ONNX Runtime picks the right 
providers. The agent reports the same metrics. Operations do not learn a new tool. They 
keep their eyes on the same cockpit. 
 

The model graph authored on the development PC is encapsulated as a subgraph within 
a larger control graph, wrapped in a Loop (while) node with a configurable cadence and 
an exit condition set in the editor. 

On the Development PC you work in the ONNX editor inside LabVIEW. You author the 
graph as model.onnx, pick a device_profile.yaml for the target, then compile to a 
session.bundle. The bundle contains the optimized graph, the chosen Execution 
Providers, and the I O bindings the runtime will use. You deploy this bundle to the SoC 
over SSH or HTTP or SCP. 

First functional architecture for GO HW 
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On the SoC target the data plane runs an ONNX Runtime session. Execution Providers 
accelerate subgraphs on the available engines. A Hardware EP exposes GPIO, ADC and 
DAC, PWM, timers and DMA as graph accessible services. I/O binding connects device or 
pinned buffers to inputs and outputs so tensors move without extra copies. Beside the 
data plane sits the control plane. It keeps a small ControlTable for parameters like stop, 
mode and threshold, an Indicators set for states like latency and fps, and a gRPC agent 
that exposes these knobs. The control plane never blocks the hot path. DMA is kept for 
large streams such as camera or audio, while small controls use local registers. 

On the Control PC the Monitoring and Control UI speaks four simple verbs over gRPC 
with TLS. SetControl and GetIndicator write and read small parameters and states. 
PushTensor and PullTensor send or fetch small tensors through named bindings, useful 
for calibration or checks. GetSessionManifest returns a JSON snapshot of the active 
session with providers, partitions and I O bindings so you can inspect what runs where. 
HotSwapModel replaces the active bundle after validation and warmup, and Rollback 
restores the previous one if a health check fails. 

This layout keeps one artifact, one engine and one cockpit. Today the LabVIEW loop still 
drives the session tick by tick, which makes debugging simple. Next we bring more 
schedule into the graph with If, Loop and Scan while keeping the same planes, the same 
API and the same zero copy path. 

Proposed hardware nodes (first wave) 

▪ sys.ControlGet(name) → read a small scalar/vector from the ControlTable (e.g., 
threshold, mode, stop). 

▪ sys.IndicatorSet(name, value) → publish metrics/states (latency_ms, fps, 
temperatures). 

▪ sys.Clock(period | source) → provide ticks or timestamps to cadence a Loop. 
▪ sys.TriggerIn(source) → edge or level trigger from external signal or timer. 
▪ sys.Delay(ms | cycles) → bounded delay inside a control subgraph. 
▪ sys.MetricTap(tensor, rate) → sample a tensor safely for monitoring without 

perturbing the hot path. 
▪ sys.Watchdog(timeout_ms, safe_action) → enforce a safe state if timing budgets 

are missed. 
▪ sys.SafeState(action) → explicit fallback action (e.g., de-energize outputs). 
▪ hw.GPIOIn(pin) → boolean/u8 input; debouncing as attribute. 
▪ hw.GPIOOut(pin, value) → digital output with optional pulse attributes. 
▪ hw.ADCIn(chan, shape) → acquire analog samples into a tensor; sampling rate as 

attribute. 
▪ hw.DACOut(chan, value) → write analog value; optional slew/limits. 
▪ hw.PWMOut(chan, duty, freq) → generate PWM; jitter and range as attributes. 
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▪ hw.RTFifoDequeue(name) / hw.RTFifoEnqueue(name, tensor) → bounded real-
time queues for small deterministic streams. 

▪ hw.DMARead(channel, bytes|shape) → zero-copy intake from device to tensor 
(camera, ADC DMA). 

▪ hw.DMAWrite(channel, tensor) → zero-copy out to device. 
Binding rules. Controls/Indicators live in local RAM (small scalars). RT-FIFO for small 
deterministic streams. DMA is reserved for large flows. All bindings are named handles 
(no raw pointers) and appear in the session manifest. 

Once a graph touches real pins, safety and evidence stop being optional. We introduce 
observability and device profiles so teams can trust what runs and prove it. 

Energy-Aware Graphs and Forensic Monitoring 
A missing cornerstone of today’s AI deployment is energy. Performance metrics such as 
latency and accuracy dominate the discussion, yet energy – the joules consumed per 
inference or training step – remains invisible. GO HW enables users to explicitly elevate 
energy as a scientific, reproducible metric inside graph orchestration. Models can thus 
be evaluated not only for their predictions, but also for their execution cost, with energy 
becoming part of the same first-order evidence as accuracy or latency. 

GO HW extends the monitoring plane with energy measurement. Each Execution Provider 
can expose an optional Energy Provider API to start and stop sampling during graph 
execution. Readings from hardware counters (e.g. NVML/PCAT for NVIDIA GPUs, RAPL for 
Intel CPUs, INA3221 for Jetson SoCs, PMBus for FPGA boards) are collected and 
normalized into joules per run. While these sources provide useful indicative values, they 
do not always reach forensic-level precision. To address this gap, Graiphic envisions 
building dedicated test benches per hardware platform, equipped with calibrated 
external instrumentation, and publishing the results openly in the same transparent 
manner as its Execution Providers Tester project. This approach ensures that hardware 
profiles are backed by auditable, high-precision evidence of energy consumption. 

These measurements become energy semantics: annotations attached to nodes, 
subgraphs, or sessions, preserved in the Session Manifest. They enable reproducibility 
(same model, same joules), comparability (different boards, same metric), and 
accountability (evidence for audits and certification). 

Beyond monitoring, GO HW introduces a new family of loss functions where energy is 
a first-class component. Users may define multi-objective optimization goals (L = α * 
error + β * joules), or construct custom losses directly from measured values by wiring 
hardware counter nodes into the training graph. This allows energy to be treated as a 
standard optimization signal, not merely as an external log. Graph-level optimizations 
such as kernel fusion, quantization, pruning, and early exit branches further reduce 
consumption without altering hardware. 
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By combining indicative monitoring, forensic test benches, semantic annotation, and 
energy-aware loss design, GO HW makes energy visible, actionable, and reproducible in 
AI systems deployed on real hardware. 

LabVIEW-native forensic measurement. 

A defining advantage of Graiphic’s GO HW project is its native LabVIEW environment. 
LabVIEW has long been the gold standard in test and measurement, and this DNA 
translates directly into energy-aware AI orchestration. Beyond relying on low-level 
counters (temperature sensors, CPU utilization, or memory load), GO HW can leverage 
LabVIEW instrumentation to build rigorous test benches for each target SoC. These 
benches combine calibrated DAQ hardware with reproducible orchestration scripts, 
enabling precise measurements of joules consumed per model, per architecture, and per 
workload. 

In practice, this means that GO HW can go beyond inference from indirect indicators and 
provide forensic-grade energy profiles. These results can be benchmarked systematically 
across Raspberry Pi, Jetson, Zynq, i.MX and industrial IPCs, then published openly on 
Graiphic’s GitHub as reference datasets. By doing so, Graiphic not only monitors energy 
but sets a reproducible standard for the entire community, where performance is always 
reported together with energy consumption. This approach ensures transparency, 
comparability, and long-term credibility, aligning with DARPA’s ambition to make energy a 
first-class scientific metric in machine learning. 

Open benchmarking and transparent culture. 

A key part of Graiphic’s DNA is a culture of transparency and open collaboration. We 
systematically publish our benchmarks and tools on GitHub, not only to demonstrate 
capability but also to provide the community with actionable insights. A representative 
example is the Execution Providers Tester, an open-source initiative that systematically 
maps ONNX Runtime operator coverage across all Execution Providers. This project, 
maintained as part of SOTA, has become a reference point for developers and vendors to 
understand backend support, prioritize missing operators, and track reproducibility 
across environments. 

We apply the same philosophy to energy. With GO HW, our goal is to build and publish 
forensic-grade energy benchmarks per SoC, validated with LabVIEW-native test benches 
and external instrumentation. These results will be openly shared on Graiphic’s GitHub, 
in the same transparent manner as our operator coverage tester. By doing so, Graiphic not 
only demonstrates mastery of the entire ONNX stack, from operators to orchestration to 
hardware execution, but also provides the ecosystem with clear, reproducible metrics 
and actionable objectives. This open benchmarking culture ensures trust, comparability, 
and alignment with DARPA’s emphasis on scientific rigor. 

 

https://github.com/Graiphic/ONNX-Runtime/tree/main/Execution%20Providers%20Tester
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Algorithmic Enhancements: Dynamic Loss Functions and Informed 
Learning through Full Graph Orchestration 

Dynamic, energy-aware loss design. 

Unlike conventional frameworks where loss functions are hard coded into the training 
loop, GO HW, built on Graiphic’s SOTA orchestration layer, treats the loss as a first-class 
graph component. This enables the injection of dynamic loss subgraphs at runtime, 
blending traditional accuracy-driven objectives with hardware-derived energy metrics 
exposed via new HW nodes such as GPIO, DMA, timers, ADC/DAC, and power counters. 
Losses can therefore explicitly minimize both prediction error and joules consumed. For 
example: L = α × error + β × energy 

This capability is unique. SOTA is currently the only framework that can dynamically 
orchestrate and reconfigure such hybrid objectives directly inside the ONNX graph, 
making energy optimization a native part of the training loop rather than an afterthought. 

Graph-compilation efficiency as orchestration property. 

GO HW leverages ONNX Runtime Execution Providers, which means that every graph 
passes through optimization pipelines where redundant operations are removed and 
compatible nodes are fused into efficient kernels. What differentiates Graiphic’s 
approach is that these compiler-level passes are orchestrated, inspected, and controlled 
at the graph level. Energy gains are no longer incidental side effects of compilation; they 
are visible, reproducible orchestration choices. Only a framework with full graph mastery 
such as SOTA can expose and standardize this capability. 

Integration of alternative learning paradigms. 

Through its orchestration-first architecture, GO HW seamlessly integrates self-
supervised and informed learning approaches as native graph constructs. In self-
supervised learning, contrastive vision methods such as SimCLR have exceeded 
supervised ImageNet performance with 100 times fewer labels, while in NLP masked 
token prediction achieves state-of-the-art results with minimal annotation. In informed 
learning, domain constraints and physical laws are encoded directly into the optimization 
graph. Zhang et al. (2021) demonstrated that an elastic-energy-constrained network 
matched supervised accuracy without ground-truth data. In computational fluid 
dynamics, informed networks reproduced full simulations approximately 60 times faster 
than FEM or FVM solvers. In structural engineering, PINNs incorporating conservation 
laws provided more precise stress predictions while reducing computational cost. These 
paradigms converge faster, require fewer epochs, and consume significantly less energy. 
With GO HW’s orchestration layer, they become deployable as graph-native strategies 
rather than external workarounds. 
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Impact: Green AI by design. 

By uniting dynamic energy-aware losses, orchestrated compiler optimizations, and alternative ML paradigms, GO HW transforms energy 
from a passive metric into an active design variable. This positions Graiphic’s SOTA as the only fully orchestrated graph framework able to 
embed energy directly into learning, ensuring AI systems that are not only accurate but also efficient, reproducible, and sustainable. 

Energy-aware contributions of SOTA and GO HW 

Category SOTA contributions GO HW contributions 

Prevention 
(reduce energy 
upfront) 

▪ Graph orchestration allows dynamic injection of energy-aware loss 
functions. 

▪ Operator fusion, pruning, quantization embedded at graph level. 
▪ Support for alternative paradigms (self-supervised, informed ML) 

reducing training epochs and data labeling effort. 
▪ Training orchestration inside ONNX graphs (loss, optimizer, control 

flow) avoids scattered scripts, ensuring leaner execution. 

▪ Hardware primitives (GPIO, DMA, timers, ADC/DAC) exposed as 
nodes, enabling energy-aware design directly tied to SoC resources. 

▪ Cross-hardware portability (CPU, GPU, FPGA, SoC) allows selecting 
the most energy-efficient target. 

▪ Automatic graph compilation with kernel fusion and memory planning 
across Execution Providers to reduce wasted cycles. 

Monitoring 
(measure and 
expose energy) 

▪ Native LabVIEW environment provides intrinsic test & measurement 
DNA. 

▪ Session manifests and metrics are integrated into orchestration 
layers for reproducible runs. 

▪ Early monitoring hooks for latency, memory, and resource usage. 

▪ Forensic-grade energy monitoring via Execution Providers extended 
with Energy Provider APIs (NVML, RAPL, INA3221, PMBus). 

▪ Dedicated LabVIEW test benches with calibrated DAQ for per-SoC 
joule measurement. 

▪ Energy semantics preserved as annotations in Session Manifest. 
▪ Open GitHub culture: publishing per-model/per-architecture 

benchmarks for transparency (e.g. Execution Providers Tester 
precedent). 

Curation 
(optimize after 
deployment) 

▪ Ability to re-train or fine-tune models by dynamically adjusting losses 
including energy terms. 

▪ Graph-level rewrites (kernel fusion, pruning, early exits) as corrective 
strategies. 

▪ Switch between inference/training/academic sessions for flexible 
post-hoc tuning. 

▪ Migration of trained models across hardware (GPU → FPGA/SoC) to 
achieve better energy/performance trade-offs. 

▪ Hot-swap and rollback mechanisms in deployed sessions without 
breaking timing or safety constraints. 

▪ Multi-objective optimization functions (error + joules) guiding iterative 
refinement of deployed systems. 
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Closing, one graph, many roles 

The path is simple to state. Keep one artifact. Let it describe models, training schedules, 
and workflows. Run it with one engine across many devices. Give people a cockpit that 
feels natural. This is how ONNX, ONNX Runtime, and the LabVIEW experience come 
together in GO HW. 

What changes for teams is focus. You spend less time stitching scripts and more time 
shaping graphs. You review optimized graphs like code. You move the same file from 
experiment to evaluation to deployment. You target a workstation, a Jetson, a Zynq, or a 
PC, and the logic stays the same. You gain speed because the runtime plans the work. 
You gain trust because the plan is visible. 

What changes for the ecosystem is reach. A native ONNX editor removes the 
dependency on third party export paths. Control flow nodes become everyday tools 
instead of hidden features. The SONNX safety profile gives sensitive sectors a clear 
contract for meaning and evidence. ONNX grows from an excellent file format to a 
complete graph computing framework that spans learning, serving, and control. 



 

29 
 

Implementation and Deployment of ONNX GO HW on SoCs (Raspberry Pi 5 as First 
Case Study) 

 The implementation of ONNX GO HW 
follows a structured workflow, moving 
from operator specification to 
deployment and monitoring on real 
SoCs. We start with the Raspberry Pi 5 
(Figure 0) as the initial demonstrator. 
Based on the Broadcom BCM2712, this 
board provides a rich set of interfaces 
(USB, Ethernet, GPIO, PCIe, etc.), making 
it an ideal target to define and validate 
the initial architecture. 
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On the development side, three core artifacts are essential: 

 

• model.onnx: the graph definition, representing the universal contract. 
• device_profile.yaml: the SoC “identity card,” describing available resources (CPU, GPU/NPU, memory, I/O) and constraints. 
• session.bundle: the optimized execution package ready for deployment on the target. 

These artifacts build on existing ONNX / ONNX Runtime mechanisms, ensuring interoperability and standardization. 
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A first proof-of-concept is already visible in the LabVIEW Graiphic IDE, which demonstrates that custom development environments can 
be constructed directly from the open-source ONNX toolchain. This highlights the possibility for third-party IDEs to leverage the same 
functional core. 
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The development workflow can be divided into two categories: 

1. Already defined by ONNX (graph compilation, operator schemas, execution management). 
2. To be specified (hardware node encapsulation, standardized SoC profiles). 

 

At deployment time, two execution scenarios are possible: 

• Cross-Compilation: the graph is compiled on the development PC using 
the target profile, producing an optimized session.bundle that is transferred to 
the SoC. Advantage: simulation can be performed before deployment. 

• In-situ Compilation: the PC sends the model and profile, and ONNX 
Runtime compiles directly on the SoC, adapting natively to available hardware 
resources. 
 

Once deployed, the architecture runs inside the SoC execution environment 
(Figure 5): 

• Data Plane: ONNX Runtime session extended with Hardware Execution 
Providers (GPIO, ADC/DAC, PWM, DMA, etc.), using optimized memory 
bindings for zero-copy execution. 
• Control Plane: runtime configuration via a control table (start/stop, 
thresholds, modes), performance indicators (latency, FPS, metrics), and a 
gRPC-based agent ensuring monitoring, remote access, and execution safety. 
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Finally, the supervision layer establishes secure communication via gRPC TLS between the Control PC and the SoC. It exposes a 
standardized set of functions: configuration and indicator retrieval, small tensor transfers, access to the session manifest (JSON), and 
dynamic model lifecycle management (HotSwap/Rollback). 
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Conclusion 

Demonstrating this workflow on Raspberry Pi 5 will provide the first end-to-end 
validation of ONNX GO HW, proving that ONNX can orchestrate SoC-level resources 
through an optional hardware namespace. From this initial feasibility study, the 
experience gained will drive: 

• standardization of SoC profiles and hardware nodes, 
• Progressive extension to additional platforms (Jetson, Zynq, FPGA, i.MX, etc.), 
• reproducibility through portable device_profile.yaml descriptions and unified 

functions. 
This approach ensures that each new SoC can be integrated into the ONNX GO HW 
ecosystem through the addition of a profile in a shared library, guaranteeing 
interoperability, portability, and long-term adoption. 

Proposed Path Forward for ONNX steering committee 

To ensure clarity and avoid fragmentation, we propose the creation of an experimental 
optional domain under ONNX, tentatively named onnx.hardware. 

• Status: The operators defined in this domain would be optional, exactly like other 
ONNX operators that are not universally implemented across Execution Providers. 
No vendor would be required to support them. 

• Scope: Initial focus on SoC primitives such as GPIO, DMA transfers, ADC/DAC, 
timers, and synchronization nodes. 

• Deliverables: 
1. Draft operator definitions with schemas and documentation. 
2. Mapping tables to existing vendor APIs (e.g., CUDA, DAQmx, XRT, 

OpenVINO, oneAPI). 
3. An open-source prototype (starting with Raspberry Pi 5) demonstrating 

feasibility. 
• Governance: This domain would be managed under a new ONNX Hardware 

Working Group, working in coordination with existing WGs (e.g., Multi-Device, 
Generative AI). 

• Goal: Provide a recognized namespace where hardware orchestration operators 
can be incubated in a structured way, ensuring legitimacy, community visibility, 
and long-term alignment with the ONNX standard. 

This approach guarantees that ONNX remains lightweight at its core while providing a 
credible framework for vendors and industrial adopters who wish to expose hardware-
level capabilities within ONNX graphs. 

 

Creating a dedicated ONNX Hardware Working Group is not just an implementation 
detail,  it is a strategic step to ensure ONNX remains the common, extensible, and 
trustworthy foundation for real-world deployment on hardware, beyond inference.  
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Why ONNX Needs a Hardware Working Group, Strategic Rationale 

Creating an ONNX Hardware Working Group is not just a technical proposal. It is a 
strategic move to ensure ONNX evolves with the needs of its community, expands its 
scope, and maintains its leadership in the AI ecosystem. Below are eleven key reasons 
why this effort is essential: 

1. Expand ONNX beyond inference GO HW transforms ONNX from a simple 
inference format into a full orchestration framework. This enables use cases in 
control, automation, edge AI, and closed-loop systems, far beyond static 
prediction tasks. 

2. Meet rising demand for edge and SoC deployments Many industrial and 
embedded applications require tight integration between compute and I/O. By 
supporting primitives such as GPIO, DMA, ADC, and PWM, ONNX becomes 
relevant for real-world deployments on low-power, timing-sensitive hardware. 

3. Prevent fragmentation through standardization Without an official hardware 
namespace, vendors will create their own incompatible extensions. A dedicated 
working group ensures that hardware-related nodes and behaviors are defined in 
a consistent, interoperable, and open way. 

4. Enable portability and reproducibility across devices With standardized 
hardware nodes and profiles, the same ONNX graph can be deployed to a 
Raspberry Pi, Jetson, or Zynq board without rewriting logic. This simplifies testing, 
integration, and reuse across heterogeneous targets. 

5. Support safety-critical applications with auditability and trust A hardware 
domain aligned with the SONNX Safety Profile enables certification and 
traceability in regulated sectors such as aerospace, defense, healthcare, and 
automotive. This elevates ONNX from an experimental tool to a trusted platform. 

6. Support real-time orchestration and deterministic control ONNX already 
includes control-flow nodes like Loop, If, and Scan. Combined with hardware-
timed operations, these allow ONNX graphs to express scheduling, triggering, and 
timing constraints essential for modern automation and robotics. 

7. Anchor long-term evolution with clear governance A working group provides 
legitimacy, shared ownership, and a structured path for future development. It 
ensures that hardware orchestration capabilities evolve under community 
guidance and remain aligned with the ONNX roadmap. 

8. Evolve ONNX into a complete, standalone platform Currently, ONNX acts as an 
exchange format dependent on third-party toolchains. By introducing native graph 
editing and execution orchestration, ONNX can become a first-class platform for 
authoring, deploying, and managing graph-based applications directly. 

9. Adapt to emerging technological needs and open new domains Supporting 
hardware and orchestration opens the door to new use cases in industrial AI, 
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robotics, embedded systems, and cyber-physical infrastructure. It also brings new 
contributors from fields beyond machine learning, such as control engineering 
and systems design. 

10. Avoid losing relevance to emerging standards If ONNX does not address 
hardware orchestration, another format eventually will. The demand is real and 
growing. Leaving this space unaddressed creates a risk of fragmentation or 
replacement, potentially rendering ONNX obsolete in key domains. 

11. Demonstrate vitality and attract innovation A dynamic ecosystem attracts 
researchers, engineers, and academics. Supporting this initiative sends a clear 
signal that ONNX is open to innovation, collaborative, and responsive to real-world 
needs. Refusing to engage could suggest stagnation or retreat, harming the long-
term health of the project. 

The Artemis rover could run on ONNX. We just have to make that choice. 
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Here is a short list of actions that make the vision concrete. 

Calls to action 
For the ONNX community 

▪ Define standard hardware nodes: hw.GPIOIn, hw.GPIOOut, hw.ADCIn, 
hw.DACOut, hw.PWMOut, hw.RTFifoEnqueue/Dequeue, hw.DMARead/Write, 
sys.Clock, sys.TriggerIn, sys.Delay. 

▪ Grow the Safety-Related Profile (SONNX) with reference tests and a profile 
interpreter 
Make timing budgets, watchdogs, and safe states first-class and verifiable. 

▪ Standardize a Register abstraction 
Add a typed, named Register class for runtime get/set. Registers are small scalars 
or short vectors declared in a Control Table, with dtype, shape, default, access 
policy, update rate, and scope. Provide ONNX nodes sys.RegisterRead(name) and 
sys.RegisterWrite(name, value), plus editor annotations. 

▪ Standardize a Session Manifest and a Session Log 
Manifest (JSON) at compile time: graph_hash, opset, providers, device_profile_id, 
io_bindings, register_map (names, logical handles or offsets, types), taps, 
rt_constraints. 
Log (NDJSON) at runtime: timestamped events, node ids, metrics, errors, and 
stable handles. No raw pointers by default; allow an explicit debug mode that 
adds physical addresses for low-level bring-up. 

▪ Support a native ONNX editor that covers import, edit, and create 
One artifact, less glue code, better auditability. 

For industry partners  
▪ Publish device profiles for real boards in practical terms 

GPIO counts and specs, ADC ranges and rates, FIFO and DMA sizes, memory 
layout, supported providers, known timing limits. 

▪ Validate a “Pi to Any SoC” reference path with public metrics 
Same graph across boards, reporting p50 and p99 latency, jitter, throughput, and 
energy. 

▪ Ship minimal driver shims for hardware nodes and registers 
Clean mappings to MMIO, sysfs, libgpiod, UIO, or char devices. Expose the 
register map through the Hardware EP and the agent. 

▪ Provide ready-to-flash images and sample graphs 
Reproducible day-one experience. 
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For teams adopting GO HW 
▪ Treat the ONNX file as the single source of truth 

Version it and generate everything else from it. 
▪ Keep preprocessing and metrics in the graph when practical 

Improves reproducibility and portability. 
▪ Compile once per target and reuse sessions for stable timing 

Preallocate, warm up, and keep sessions resident. 
▪ Use Registers for safe live tuning and monitoring 

Clear names, bounded values, agent-side validation and ACLs. Prefer handles 
over raw addresses; enable debug mode only on bench rigs. 

▪ Enable Manifest and Log with the right level 
Verbose in dev, minimal in prod, alert on thresholds. 

▪ The story began with a simple idea. A graph can be more than a snapshot of a 
model. It can be the plan that a runtime turns into reliable behavior on real 
machines. It can be the language that engineers and researchers share. It can be 
the bridge between design and the world. 
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Target platform matrix for GO HW v1.0 

Below is a pragmatic, coherent set of targets where GO HW will focus first. Each line 
shows typical ONNX Runtime providers and the hardware-node bindings expected. 

Embedded SoCs and SBCs 
▪ Raspberry Pi 4 and 5 Providers: CPU with XNNPACK or ACL when available. 

Notes: Linux, GPIO and PWM via kernel drivers, SPI/I2C/ADC through HATs, DMA for 
high-rate streams where supported. 

▪ NVIDIA Jetson family (Orin, Xavier, Nano) Providers: CUDA, TensorRT. 
Notes: CSI cameras through DMA, GPIO and PWM via libgpiod, high-bandwidth video 
and DNN offload. 

▪ AMD Xilinx Zynq UltraScale+ and Kria Providers: Vitis AI where available, CPU fallback. 
Notes: FPGA fabric for deterministic I O, DMA engines, RT-FIFO patterns, PWM and 
timers in PL or PS. 

▪ NXP i.MX 8M PlusProviders: CPU with XNNPACK, optional NPU via vendor EP when 
available. Notes: Industrial-friendly I O, camera pipelines, decent power envelope. 

▪ TI Sitara AM62/AM64 Providers: CPU with XNNPACK. Notes: PRU-based I/O timing, 
EtherCAT on selected SKUs, good for control loops. 

▪ Rockchip RK3588 class boards Providers: CPU with XNNPACK, vendor NPU EP where 
supported. Notes: Strong CPU, plentiful I O, popular in edge boxes. 

Industrial PCs and controllers 
▪ Intel x86-64 IPCs Providers: OpenVINO for CPU and iGPU, CPU EP as baseline. 

Notes: Rich PCIe and field-bus cards, predictable thermal budget, long-term support. 
▪ Windows IPCs with discrete or integrated GPUs Providers: DirectML for compatible 

GPUs, CPU EP as baseline. Notes: Useful where Windows tooling is mandatory. 
Industrial automation vendors for device profiles and field-bus drivers 
▪ Beckhoff Focus: EtherCAT device profile, GPIO/PWM mapping, DMA paths on IPCs. 
▪ Siemens Focus: Industrial PCs and edge devices, Profinet profiles, OPC UA bridges. 
▪ Schneider Electric Focus: Industrial PCs, Modbus and Ethernet/IP profiles, gateway 

patterns. 
▪ Gantner Focus: high-precision DAQ profiles, synchronized sampling and streaming. 

This list keeps GO HW general and vendor-neutral. It concentrates on Linux-capable SoCs 
and IPCs where ONNX Runtime already runs well and where hardware nodes can bind 
cleanly to GPIO, timers, FIFOs, and DMA. Classic closed PLC runtimes are out of scope. 
Integration happens through industrial PCs or Linux controllers that sit next to PLCs and 
talk over field buses. 
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Frequently Asked Questions (FAQ) 
Q1. What happens if a hardware node is used but the target device does not support 
it? 
A1. The behavior will be defined by the Graiphic Hardware Working Group. Possible 
policies include: 
Error: execution stops with a clear diagnostic. 
Fallback: a safe software emulation or CPU path is used.  
The choice will be discussed and standardized openly, so the community agrees on the 
expected semantics. 

Q2. What if a hardware platform cannot execute the requested operation due to 
limitations? 
A2. Again, the Working Group will define the policy. Options include a strict error or an 
explicit fallback to a compatible provider. The key is that the behavior is not left to private 
implementations, it is decided transparently by the community to ensure predictability 
and reproducibility. 

Q3. Does GO HW force hardware vendors to implement new operators? 
A3. No. Just like ONNX Runtime today, where Execution Providers do not support every 
ONNX operator (and this has never been a blocker), GO HW operators are optional. 
Vendors can freely decide which hardware nodes to support. 
To ensure transparency, Graiphic has already benchmarked this phenomenon through 
the Execution Provider Coverage Tester (another Graiphic-led open source initiative), 
which documents operator support across EPs. The same principle naturally applies to 
ONNX HW: optional nodes, no obligation, and clear visibility of what each vendor 
supports. 

 

https://github.com/Graiphic/ONNX-Runtime/tree/main/Execution%20Providers%20Tester
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Q4. Why not just leave this as custom operators managed by individual companies? 
A4. Without a common framework, every vendor would create incompatible extensions, 
leading to fragmentation and lock-in. A Working Group ensures that policies, schemas, 
and naming are agreed upon openly and democratically, avoiding duplication and 
incompatibility across the ecosystem. 

Q5. Why create a Working Group instead of finalizing the standard directly? 
A5. A Working Group allows us to explore, prototype, and refine policies with community 
input before anything is standardized. It provides legitimacy, collective ownership, and a 
transparent decision process. This avoids the risks of one company pushing a private 
initiative and instead guarantees that the evolution of ONNX is guided by shared 
consensus. 

Q6. How can we address heterogeneous scenarios like DMA, given that each 
hardware vendor follows its own protocol? 
A6. The reasoning is the same as in ONNX Runtime today: Execution Providers are not 
identical and often have different behaviors. ONNX provides a common abstraction layer 
while allowing vendor-specific implementations. In practice, there will always be a shared 
denominator (common patterns across hardware) and vendor-specific details. The ONNX 
HW Working Group will be the place to define: 

• how to parameterize nodes in a generic way, 
• how to expose vendor-specific extensions, 
• and how to manage exceptions consistently. 

This ensures both interoperability and flexibility, without forcing uniformity across all 
vendors. 
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Call for Funding: Why Industry Should Invest in GO HW 

 

Graiphic has built the first end-to-end ecosystem where AI, logic, and hardware 
orchestration live inside a single ONNX graph. 

We are now opening a Call for Funding to accelerate the roadmap of GO HW. 

Why Invest? 

• Strategic Advantage: Gain early access to the first universal cockpit that unifies AI 
+ hardware orchestration across CPUs, GPUs, FPGAs, NPUs, and SoCs. 

• Portability & Standards: Ensure your hardware, SDKs, and platforms are natively 
supported in a framework that is becoming the de facto open standard. 

• Energy & Efficiency: Join the revolution of Green AI by design. GO HW introduces 
forensic-grade energy metrics and optimization directly inside ONNX graphs. 

• Safety & Trust: Participate in shaping the SONNX safety profile, unlocking adoption 
in aerospace, defense, automotive, healthcare, and critical infrastructure. 

• Market Reach: From Raspberry Pi to NVIDIA Jetson, from industrial PLCs to cloud 
servers, GO HW runs everywhere, and your technology can be part of it. 

What We Offer 

• Co-development opportunities with our engineering team. 
• Early integration of your platforms and SDKs into GO HW. 
• Joint visibility in international standardization efforts (ONNX, DARPA, Horizon 

Europe, ADRA). 
• Shared benchmarking and open-source dissemination to establish your 

technology as a leader in AI orchestration. 

How to Engage 

Graiphic is actively seeking: 

• Equity investors ready to support our growth. 
• Industrial sponsors willing to co-fund R&D and test benches. 
• Strategic partners (hardware vendors, system integrators, large OEMs) who want 

their platforms at the heart of the future ONNX Hardware ecosystem. 

Join us in shaping the universal cockpit for AI. 

Contact: funding@graiphic.io | www.graiphic.io 

mailto:funding@graiphic.io
http://www.graiphic.io/?utm_source=chatgpt.com
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Annexes 
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Graph Computing for AI Systems: State-of-the-Art (2021–2025) 

Introduction 

Graph-based computing has become fundamental in modern AI systems. Neural 
networks are naturally expressed as computational graphs – nodes represent operations 
or layers and edges represent data flows (tensors) between them. Likewise, complex AI 
pipelines (from sensor I/O to model inference to actuator control) can be modeled as 
directed acyclic graphs (DAGs) or dataflow programs. Representing AI workflows as 
graphs enables global optimizations, parallelism, and clarity in system 
orchestration[1][2]. This review surveys recent advances (2021–2025) in graph computing 
for AI, covering both academic research and industrial frameworks. We examine 
computational graph execution, dataflow/DAG systems, graph neural networks, and 
runtime scheduling on heterogeneous hardware, as well as major graph-centric AI 
frameworks. We then compare these solutions to the emerging ONNX GO HW approach 
for unified, real-time AI system orchestration. 

Academic Advances in Graph Computing (2021–2025) 

Computational Graph Execution: Static vs Dynamic Graphs and Scheduling 

Early deep learning frameworks like TensorFlow (<=1.x) employed static computational 
graphs, requiring the full network graph to be defined (and optimized) ahead of execution. 
Newer frameworks such as PyTorch and TensorFlow 2.x emphasized dynamic graphs – 
networks defined imperatively, allowing flexible structures (e.g. loops, conditionals) and 
easier debugging[3]. Static graphs excel at global optimization: the graph can be 
compiled for efficient execution (node fusions, memory planning, etc.), often yielding 
faster runtimes once built. Dynamic graphs offer flexibility for dynamic control flow and 

https://arxiv.org/html/2504.20198v1#:~:text=practical%20applications%20across%20various%20computational,Graph
https://graiphic.io/labview-everywhere-onnx/#:~:text=Yet%20hidden%20inside%20ONNX%20are,math%3B%20it%E2%80%99s%20a%20living%20schedule
https://www.tutorialspoint.com/chainer/chainer-dynamic-vs-static-graphs.htm#:~:text=Chainer%3A%20Dynamic%20vs%20Static%20Graphs,This%20approach%20provides
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variable-length data, at some cost to peak performance. Modern systems are 
increasingly hybrid. For example, PyTorch 2.0 introduced TorchDynamo and other JIT 
compilers to capture dynamic graphs and compile them, aiming to get the best of both 
worlds (eager flexibility with optimized execution)[1]. Recent research also explores new 
scheduling algorithms for computational graphs. Zhao et al. (OSDI 2023) present a 
method to effectively schedule DNN computation graphs on specialized accelerators 
by co-designing with hardware architecture, achieving over 11× speedup vs. TVM on a 
custom domain-specific chip[4][5]. Overall, the state-of-the-art emphasizes graph 
compilers and schedulers that can optimize computation graphs end-to-end, maximizing 
hardware utilization while accommodating dynamic behaviors. 

Dataflow and DAG-Based Systems for Distributed and Embedded Execution 

Beyond neural network graphs, many AI workflows are orchestrated as dataflow 
pipelines or DAGs, especially in distributed or edge deployments. Data preprocessing, 
model inference, and postprocessing can be chained as graph nodes. Academic systems 
like Ray and DAG-aware schedulers aim to efficiently distribute such task graphs over 
clusters, but embedded and real-time settings pose additional constraints (latency, 
memory). Flow-based programming concepts have re-emerged in AI: for instance, 
streaming systems (Apache Beam/Google Dataflow) represent computations as DAGs of 
operations that can scale out. On the embedded side, research has examined combining 
control and AI in signal processing pipelines using DAG scheduling with real-time 
constraints[6][7]. Many robotics and IoT applications use graph-based pipe-and-filter 
architectures: nodes for sensing, perception (AI models), planning, and actuation, 
connected by data streams. Ensuring deterministic execution and low jitter in these 
DAGs is an ongoing challenge. Academic works on real-time DAG scheduling on 
heterogeneous CPUs/accelerators (e.g. for autonomous vehicles) have introduced 
approaches like graph scheduling with GNN-based heuristics[8], indicating a crossover 
of graph computing and learning-based optimization. In summary, representing AI 
system workflows as dataflow graphs is now common; recent research is improving how 
we map and schedule these DAGs across distributed or embedded resources for 
efficiency and reliability. 

Graph Neural Networks and Graph-Based Data Processing 

In parallel to using graphs for computation scheduling, AI models themselves 
increasingly operate on graph-structured data. Graph Neural Networks (GNNs) have 
become a major research frontier, extending deep learning to arbitrary graph data (social 
networks, molecules, knowledge graphs, etc.). GNN research 2021–2025 produced new 
architectures and theoretical insights. Early GNNs like GCN and GraphSAGE used 
localized message-passing; more recent models incorporate attention and transformer 
mechanisms to capture long-range dependencies on graphs[9]. For example, 
Graphormer (Microsoft, 2021) demonstrated that with the right positional encodings, a 
Transformer can achieve state-of-the-art on graph benchmarks by effectively treating the 
graph as a fully-connected attention network[9][10]. There is also growing work on 
temporal GNNs (graphs that evolve over time) – a 2023 survey formalized the state-of-
the-art and open challenges in temporal graph learning[11]. Moreover, the scalability of 
GNNs is a key focus: techniques like neighbor sampling, mini-batch training, and 
distributed GNN frameworks (e.g. DGL, PyTorch Geometric) enable learning on large 

https://arxiv.org/html/2504.20198v1#:~:text=practical%20applications%20across%20various%20computational,Graph
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=This%20paper%20introduces%20a%20systematic,imbalanced%20memory%20usage%20distribution%20across
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=different%20specialized%20compute%20units,23%C3%97%2C%20respectively
https://www.sciencedirect.com/science/article/abs/pii/S0167739X25003425#:~:text=A%20learnable%20dynamic%20scheduling%20for,utilization%20and%20workflow%20execution
https://www.nature.com/articles/s41598-025-94068-0#:~:text=,consumption%20under%20response%20time%20constraints
https://www.mdpi.com/2076-3417/15/10/5648#:~:text=MDPI%20www,combined%20with%20deep%20reinforcement%20learning
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CSo%20people%20asked%20how%20we,connected%20to%20every%20other%20token
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CSo%20people%20asked%20how%20we,connected%20to%20every%20other%20token
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CIf%20every%20node%20can%20communicate,%E2%80%9D
https://arxiv.org/abs/2302.01018#:~:text=arXiv%20arxiv,rigorous%20formalization%20of%20learning
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graphs with millions of nodes. Researchers are exploring high-performance GNN training 
on CPU-GPU clusters[12][13] and even custom hardware (e.g. Graphcore IPUs 
specialized for graph workloads). Another trend is combining GNNs with causal 
inference and knowledge graphs, or using GNNs in multi-agent systems and program 
analysis[14][15]. In summary, graph-based data processing is now a staple of AI, and 
state-of-the-art GNN techniques push both model accuracy and efficiency (with co-
design from algorithms down to hardware acceleration[16][17]). 

Runtime Systems and Heterogeneous Scheduling for Computation Graphs 

Executing computational graphs efficiently on heterogeneous hardware (CPUs, GPUs, 
FPGAs, NPUs, etc.) is an active research area. Academic work has shown that graph 
compilers and runtimes can drastically improve performance by optimizing placement, 
memory layout, and kernel fusion. For instance, Furutanpey et al. (2025) 
comprehensively evaluated neural network graph compilers across hardware and 
found that vendor-specific optimizations (TensorRT, OpenVINO, etc.) can invert which 
model runs faster on a given hardware[18][19]. This underscores that compilers are now 
as important as model architecture for deployment. Modern compilers like TVM (Apache 
TVM) use auto-tuning to generate optimized kernels for each target, achieving 
performance portability across diverse backends[20]. Similarly, Google’s XLA (used in 
JAX and TensorFlow) and Meta’s Glow compiler perform graph-level optimizations 
(constant folding, operator fusion) and emit device-specific code. A key development is 
support for graph partitioning and offloading – splitting a graph so parts run on 
specialized accelerators (e.g. DSP, FPGA) while others run on CPU/GPU. Research on 
scheduling such partitions shows that considering hardware topology (memory 
hierarchy, interconnect) when partitioning yields big gains[4][21]. There is also interest in 
real-time scheduling of neural network graphs on accelerators in safety-critical 
contexts[22]. A recent survey (2023) on real-time scheduling for accelerators notes the 
need for deterministic execution of computation graphs under timing constraints[23]. In 
summary, state-of-the-art runtime systems use graph-level knowledge to orchestrate 
execution across heterogeneous hardware, achieving major throughput improvements 
while beginning to address predictability and real-time needs. 

Industrial Frameworks and Ecosystems 

Modern AI software stacks heavily leverage graph representations. Below we review 
major industrial frameworks in three categories: model compilers/runtimes, graph-
based pipeline orchestrators, and hardware-specific graph SDKs/DSLs. 

Model Compilers and Runtimes (Graph Optimizers) 

• ONNX Runtime (ORT) – A high-performance, cross-platform engine for executing 
ONNX computational graphs. Developed by Microsoft, ORT takes an 
interoperable graph (ONNX model) and optimizes it with graph rewrites and 
kernel fusions, then dispatches to hardware-specific backends (EPs). It provides 
a flexible API and integrates many hardware accelerators via Execution 
Providers, from CUDA and TensorRT to DirectML and CoreML[24][25]. ORT is 
widely used in production for its portability – the same ONNX graph can run on 
CPU, GPU, mobile NPUs, etc., with the runtime choosing the fastest path[26]. 

https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=Scaling%20graph,clusters
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=you%20want%20to%20solve%20the,the%20training%2C%20accelerate%20the%20inference
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CThere%E2%80%99s%20some%20work%20on%20how,are%20independent%20from%20each%20other
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CThere%20is%20also%20a%20new,inject%20that%20time%20information%20in
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=Efficiency
https://www.amazon.science/blog/kdd-2023-graph-neural-networks-new-frontiers#:~:text=%E2%80%9CSo%20that%27s%20at%20the%20algorithm,the%20training%2C%20accelerate%20the%20inference
https://arxiv.org/html/2504.20198v1#:~:text=relative%20performance%20across%20competing%20architectures,18%20will%20detail%20experiment%20configurations
https://arxiv.org/html/2504.20198v1#:~:text=Image%3A%20Refer%20to%20caption%20Figure,observe%20the%20exact%20inverse%20behavior
https://www.usenix.org/system/files/osdi18-chen.pdf#:~:text=Learning%20www,portability%20to%20deep%20learning
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=This%20paper%20introduces%20a%20systematic,imbalanced%20memory%20usage%20distribution%20across
https://www.usenix.org/system/files/osdi23-zhao.pdf#:~:text=our%20work%20enables%20the%20synergy,across%20different%20specialized%20compute%20units
https://www.nature.com/articles/s41598-025-94068-0#:~:text=,consumption%20under%20response%20time%20constraints
https://arxiv.org/html/2403.07120v1#:~:text=Comparing%20Task%20Graph%20Scheduling%20Algorithms%3A,with%20the%20objective%20of
https://onnx.ai/#:~:text=ONNX%20,to%20maximize%20performance%20across%20hardware
https://onnxruntime.ai/docs/execution-providers/QNN-ExecutionProvider.html#:~:text=The%20QNN%20Execution%20Provider%20for,devices%20with%20Qualcomm%20Snapdragon%20SOC%E2%80%99s
https://onnx.ai/#:~:text=runtimes%20and%20libraries%20designed%20to,maximize%20performance%20across%20hardware
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• Apache TVM – An open source deep learning compiler stack that builds end-to-
end optimized code for models. TVM takes a model’s graph (from frameworks like 
PyTorch or TensorFlow) and applies optimizations at both the graph level (operator 
fusion, layout changes) and the tensor operation level (auto-tuned kernel code 
generation)[20]. It aims for performance portability: developers write a model 
once, and TVM can compile it for CPUs, GPUs, ASICs, and even 
microcontrollers[27]. Techniques like the Ansor auto-scheduler explore 
optimized compute schedules automatically[28]. TVM has become a backbone 
for many vendor-specific compilers and is used in Amazon’s and ARM’s 
toolchains for efficient inference. 

• Google XLA – The Accelerated Linear Algebra compiler, originally for TensorFlow, 
now underlies JAX and parts of PyTorch (via TorchXLA). XLA traces and compiles 
whole computation graphs into optimized executables (HLO IR) for each target 
(CPU, GPU, TPU). It excels at static graph optimizations – constant folding, 
operation fusion, buffer reuse – and can also do ahead-of-time compilation for 
production. XLA’s graph optimizations improve performance and can give more 
predictable execution (important in Google’s large-scale deployments). 

• NVIDIA TensorRT – A high-throughput deep learning inference runtime that 
optimizes neural network graphs for NVIDIA GPUs. TensorRT performs aggressive 
optimizations like combining layers, using reduced precision (FP16/INT8), and 
auto-tuning kernels. It represents the model as a graph of layers and integrates 
with NVIDIA’s CUDA libraries. In practice, TensorRT often significantly reduces 
latency and increases throughput for CNNs, transformers, etc. on GPU. However, 
it is limited to NVIDIA hardware and primarily focuses on inference (not training). 

• Meta Glow – A graph lowering compiler from Facebook (Meta) that targets various 
hardware backends. Glow takes in a neural network computation graph and 
lowers it through two IR levels: an optimization IR for high-level graph opts, and a 
lower-level IR closer to hardware ops[29]. It can then generate code for CPUs, 
GPUs, or custom accelerators. Glow’s design emphasizes a modular backend 
architecture and has been used to deploy models on mobile devices and 
specialized ASICs at Meta[30]. (Glow is open source, though in recent years ORT 
and TVM have seen broader adoption.) 

• Others – OpenVINO (Intel) is another graph-oriented runtime, converting models 
to an IR and optimizing for Intel CPUs, iGPUs, and VPUs[19]. TensorFlow Lite uses 
FlatBuffer graphs and delegation to hardware drivers for mobile inference. 
PyTorch’s NNAPI and CoreML backends similarly convert the PyTorch graph to run 
on Android or iOS accelerators. All these frameworks share the goal of maximizing 
model execution efficiency via graph-level insights, at the cost of additional 
compilation or conversion steps. 

Graph-Based Pipeline Orchestration Systems 

• NVIDIA Triton Inference Server – A server framework for deploying AI models at 
scale, with support for model pipelines (ensembles). Triton treats an ensemble 
as a DAG of models and processing steps, where the output of one model feeds 
the next[31]. This allows building end-to-end AI services (e.g. decode image → 
detect objects → filter results) all within the server. The ensemble DAG execution 
is handled by Triton’s scheduler, avoiding extra data copies and network hops 
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between models[31][32]. Triton supports multi-framework models (TensorFlow, 
PyTorch, ONNX, etc.) and handles scheduling, batching, and I/O, making 
production deployment of graph-based AI pipelines easier. 

• NVIDIA Holoscan & GXF – Holoscan is an SDK for real-time sensor and AI 
processing on edge devices (e.g. NVIDIA Jetson/Orin). It is built on the Graph 
Execution Framework (GXF), which executes component networks with strict 
scheduling. In GXF/Holoscan, an application is described as a compute graph of 
entities (nodes) connected by edges[33]. Each entity contains components 
(codelets) for specific tasks, and the framework provides a scheduler, memory 
manager (for zero-copy buffers), and message passing primitives[34][35]. 
Developers can string together sensor input nodes, AI inference nodes, and output 
nodes, and Holoscan will orchestrate them with low latency. This is used in 
domains like medical imaging, where a stream of data must pass through an AI 
pipeline on-device in real time. 

• NVIDIA DeepStream – A graph-driven pipeline framework specialized for video 
analytics and IoT, built on GStreamer. DeepStream allows construction of vision 
processing pipelines (ingest streams, decode, infer with DNNs, track, display) 
using a graph specification. Under the hood, each GStreamer element (e.g. a 
decoder, an inference plugin) is wrapped as a node (component) in a graph, 
managed by NVIDIA’s graph composer runtime[36][37]. This lets developers 
assemble complex multimedia AI applications with minimal coding – the 
configuration (often via YAML or a visual tool) defines how frames flow through a 
DAG of plugins. DeepStream, coupled with Graph Composer, thus exemplifies a 
graph-based orchestrator for edge AI, though primarily targeting NVIDIA hardware 
and streaming use cases. 

• ROS 2 (Robot Operating System 2) – A popular open-source framework for 
robotic systems, which follows a dataflow graph paradigm at a high level. A ROS 
2 system is composed of many modular nodes (sensing, planning, control, etc.) 
that exchange messages via topics (or services), forming a computational graph 
of the robot’s software[38]. ROS 2’s middleware (DDS) handles message transport 
between nodes, which may be distributed across multiple processors. The ROS 
graph can be introspected (e.g. via rqt_graph) to see how data flows between 
components. While ROS 2 is not limited to AI, it increasingly integrates AI modules 
(for example, a node running a deep learning model subscribing to camera images 
and publishing detections). It provides a standardized way to orchestrate 
complex, distributed systems, but being a general framework, achieving hard real-
time behavior or deterministic scheduling requires additional patterns or the Real-
Time ROS extensions. 

• LabVIEW – An established graphical programming environment (from National 
Instruments) based on the dataflow model. Engineers “program” by connecting 
functional blocks (nodes) with wires (edges that carry data), naturally creating a 
graph that represents the system logic. LabVIEW has been traditionally used for 
instrumentation, control, and measurement systems. Each loop, formula, or I/O 
operation is a node in a LabVIEW block diagram, and the LabVIEW runtime 
schedules execution according to dataflow: a node runs when all its inputs have 
data available[39]. This approach made complex systems easier to design and 
visualize. However, deploying LabVIEW programs onto embedded targets 
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historically required the LabVIEW runtime or FPGA-specific code generation, 
limiting portability. LabVIEW is a precursor of modern DAG orchestration tools in 
its philosophy, and its visual programming style remains highly accessible. Recent 
efforts (e.g. from Graiphic) even integrate AI model graphs (via ONNX) into 
LabVIEW, blurring the line between traditional dataflow programming and AI graph 
execution[40][41]. 

Hardware-Specific SDKs and Graph DSLs 

• AMD Vitis AI – A comprehensive development stack for accelerating AI inference 
on Xilinx/AMD FPGAs and adaptive SoCs. Vitis AI includes model optimizers, 
quantization tools, and compilers that take a trained network (TensorFlow, 
PyTorch, ONNX, etc.) and compile it to run on a FPGA’s deep learning processing 
unit (DPU) IP. It is essentially a graph compiler + runtime specialized for Xilinx 
devices. Developers can deploy models on edge boards (like Zynq, Versal) with 
support for 8-bit quantization and batch processing. According to AMD, “Xilinx 
Vitis AI is a development stack for AI inference on Xilinx hardware platforms”, 
allowing integration of one or more DPU accelerator kernels into a design[42]. The 
stack provides APIs to run the compiled model and manage memory, with the goal 
of near ASIC-like efficiency using reconfigurable logic. 

• Adaptive Dataflow (ADF) – Xilinx Graph DSL for AI Engines: Xilinx’s Versal ACAP 
platforms include an array of VLIW processors called AI Engines (AIE). These are 
programmed via the ADF API (Adaptive Data Flow), a C++ graph DSL. Using ADF, 
developers specify a dataflow graph of kernels (functions) and streams 
connecting them, which the toolchain then schedules onto the many-core AIE 
array[43][44]. Kernels exchange data via ping-pong buffers (windows) or streams 
over the on-chip network. The ADF model lets multiple kernels execute in parallel, 
streaming data between each other without going to off-chip memory. For 
example, a signal processing pipeline of filters and neural network layers can be 
mapped as a graph, and the ADF runtime ensures each kernel runs on an AI Engine 
core with synchronized data movement. This graph-level programming is crucial 
to fully harness the AIE fabric’s performance, and it abstracts away a lot of the low-
level thread and DMA management for the programmer[43]. 

• Qualcomm QNN (AI Engine Direct SDK) – Qualcomm provides the Qualcomm 
Neural Network (QNN) SDK, also known as AI Engine Direct, for running AI 
models on Snapdragon SoC accelerators (Hexagon DSPs, NPUs, GPUs). 
Developers or frameworks (like ONNX Runtime) use QNN to construct a 
hardware-specific graph from an abstract model, which can then be executed on 
the device’s AI cores[25]. For instance, the ONNX Runtime QNN execution 
provider transforms an ONNX model into a QNN graph and delegates it to 
Qualcomm’s libraries[25]. The QNN SDK handles heterogeneous execution 
across CPU, Adreno GPU, and the Hexagon-based HTP (Hexagon Tensor 
Processor). It includes offline quantization and optimization tools as well. QNN is 
essentially Qualcomm’s answer to TensorRT or Vitis: it optimizes neural network 
graphs to leverage specialized DSP/NPU instructions for fast inference on 
mobile/embedded platforms. 

• Other Graph DSLs/SDKs – NVIDIA CUDA Graphs (introduced in CUDA 10) allow 
forming a graph of GPU kernels and memcopy operations to reduce launch 
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overhead – useful for regular inference/training loops. Intel oneAPI/dnnl graph 
(formerly nGraph) was an IR to represent deep learning computations for Intel 
accelerators, now part of OpenVINO. ARM NN SDK provides a graph-based API to 
run networks on ARM CPU, Mali GPU, or Ethos NPU. Many smaller vendors 
(Cambricon, Imagination, etc.) also expose graph-level compilers to integrate 
their neural accelerators. The common theme is exposing a graph abstraction to 
developers so that the runtime can map computations efficiently to the hardware, 
rather than writing device-specific code for each layer. 

Toward Unified Graph Orchestration: ONNX GO HW vs. Existing Solutions 

Despite the rich ecosystem above, current solutions often address pieces of the AI 
system puzzle. Each framework tends to focus either on neural network computation or 
on pipeline orchestration or on low-level hardware acceleration, but not all at once. This 
fragmentation means engineers stitch together multiple tools – for example, using 
TensorRT for model inference inside a ROS2 or LabVIEW application for control logic, and 
writing custom glue code for I/O and scheduling. Below, we compare what existing 
frameworks do well and where they fall short, especially in light of goals like full-system 
graph unification and real-time performance. 

Strengths of Existing Frameworks: Modern compilers and runtimes excel at optimizing 
neural network graphs for performance. They provide tremendous speed-ups by fusing 
operations and leveraging hardware-specific libraries (for instance, graph compilers can 
“enhance throughput by orders of magnitude” without changing model accuracy[1]). 
Meanwhile, pipeline tools like ROS 2 and DeepStream are great at modularity and 
integration – they break complex systems into nodes and allow mixing and matching 
components (sensors, AI models, etc.) via standardized interfaces[38]. Industrial 
orchestrators handle concurrency and data transport (e.g. Triton’s ensemble scheduler 
avoids overhead by keeping data on-device between model stages[31][45]). Hardware-
specific SDKs provide maximal efficiency on their targets – e.g. Vitis AI can get FPGA 
inference running with low batch latency, and QNN squeezes optimal performance from 
Snapdragon NPUs. In summary, each class of tool is highly optimized for its domain: 
neural network execution, multi-component pipelines, or low-level hardware utilization. 

Limitations and Gaps: No current framework fully unifies AI models, general logic, and 
I/O control in one graph with portability across systems. Graph compilers (ORT, 
TensorRT, etc.) treat the model in isolation – any surrounding logic (preprocessing, 
decisions based on model output, device commands) must be implemented in separate 
code. Pipeline orchestrators like ROS or LabVIEW handle I/O and control flow but 
typically treat the AI model as a black box or external function call, rather than integrating 
it into a single executable graph representation. This separation can cause inefficiencies 
(data copying between runtime environments) and complexity in verifying end-to-end 
behavior. Moreover, many solutions lack real-time determinism. For example, a ROS2 
or DeepStream pipeline might achieve high throughput on average, but without careful 
design one can’t guarantee microsecond-level jitter bounds – message queues and 
dynamic scheduling can introduce variability. Traditional LabVIEW on a PC wasn’t 
designed for hard real-time control either – it often required a special real-time module 
or FPGA for deterministic timing. Portability is another issue: frameworks like TensorRT 
or Vitis are vendor-locked (NVIDIA-only, Xilinx-only), and even a “platform-neutral” 
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runtime like ORT doesn’t inherently handle I/O or synchronizing with control loops – so 
developers resort to platform-specific code for those parts. In short, current SOTA tools 
tend to create silos: one for AI inference, one for control logic, one for hardware 
interfacing[46]. This makes it challenging to maintain a single source of truth for the 
entire AI system’s behavior. 

SOTA + ONNX GO HW: A Step Toward Unified, Real-Time Orchestration: SOTA (State 
Of The Art) and ONNX GO HW are recent initiatives (2025) by Graiphic that aim to address 
the above gaps by leveraging ONNX as a common graph representation beyond neural 
networks[47][40]. SOTA is a fully ONNX-native AI framework integrated into LabVIEW, 
which allows designing and even training deep learning models directly as ONNX graphs 
(with visual editing)[40]. More importantly for deployment, ONNX GO is a runtime that can 
orchestrate ONNX graphs in real time – essentially treating an ONNX graph as a 
program that runs across heterogeneous hardware, with ONNX Runtime under the hood 
for execution[41]. The upcoming ONNX GO HW extension goes further: it introduces 
standardized hardware-interfacing nodes (for DMA transfers, GPIO, ADC/DAC, timers, 
etc.) as part of the ONNX graph[48]. This means an engineer could represent an entire 
system – sensor input, decision logic (including AI model inference and classical code), 
and actuator output – as one ONNX computational graph. The ONNX Runtime then 
executes this graph end-to-end, calling out to hardware where needed (e.g. reading a 
sensor value into a tensor, feeding it through a neural net, then writing a control 
signal)[48]. All of it is scheduled by a single engine, rather than hopping between different 
runtimes. 

Example: Unified graph orchestration on an SoC. In this architecture, a LabVIEW-
designed diagram is compiled to an ONNX graph (containing AI models, control logic, and 
I/O nodes) and deployed to a target device. ONNX Runtime executes the graph as a data-
plane on the device (utilizing hardware accelerators via execution providers, and 
performing I/O through hardware nodes), while a remote control-plane monitors and 
adjusts the system via secure RPC. This approach yields a single, portable graph 
representation governing the whole AI system, improving transparency and determinism. 

By unifying everything in the ONNX graph, ONNX GO HW provides several advantages: 
Full-System Graph Unification – the entire pipeline is a single graph artifact, which can 
be inspected, tested, and versioned. This graph isn’t just neural network layers; it can 
include conditional logic (ONNX If nodes), loops (Loop/Scan), and now hardware 
interactions, enabling complex scheduling and decision-making to be encoded 
declaratively[2]. Graiphic’s CTO describes it aptly: “With [ONNX’s] If, Loop, and Scan, a 
graph can decide, repeat, and orchestrate – not just what to compute, but when and how. 
Suddenly, an ONNX model is not frozen math; it’s a living schedule”[2]. Integrated 
Control and I/O – ONNX GO HW’s hardware nodes allow direct graph-level interfacing 
with devices[48]. For example, one could have an ONNX subgraph that reads a digital 
input, feeds it into a decision neural net, then through an If node decides whether to 
activate an output. Traditionally, the “glue” for such logic would be written in C++ or 
Python outside the model, but here it’s part of the graph. This not only reduces 
development effort (no separate code for integration) but also ensures the entire 
execution can be analyzed for timing. Portability – ONNX graphs are portable by design; 
a single ONNX file can run on x86, ARM, NVIDIA GPUs, FPGAs (via Vitis), Qualcomm NPUs 
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(via QNN), etc., as long as there is an ONNX Runtime execution provider for that 
hardware. ONNX GO leverages this by allowing LabVIEW-designed systems to be 
deployed on “any hardware” without requiring the LabVIEW runtime on the target[49][50]. 
This is a significant shift: in one use case, they demonstrate designing a control system 
in LabVIEW and deploying it to run on a Raspberry Pi solely via an ONNX graph artifact[51]. 
In essence, the ONNX graph becomes a universal, vendor-neutral bytecode for AI 
systems. Finally, Real-Time Determinism and Efficiency – ONNX Runtime can compile 
a graph (especially with formats like ORT format or by using static execution planners) 
such that execution is repeatable and time-predictable. The LabVIEW+ONNX approach 
highlights determinism: “ONNX Runtime [sessions] compiled once, [are] stable across 
runs”, providing consistent timing[52]. Eliminating middleware layers (like a separate 
script invoking model inference) cuts down variability and latency – e.g., avoiding 
unnecessary buffer copies and context switches. Early indications (from Graiphic’s 
demos) show ONNX GO can achieve millisecond-range response with low jitter for vision-
and-control tasks at the edge[53]. The unified graph also simplifies certification and 
validation in safety-critical fields, since the whole logic (AI + non-AI) can be audited as 
one unit[54]. 

In summary, ONNX GO HW represents a convergence of ideas: it treats everything as a 
graph – not just neural nets, but loops, decisions, and hardware interactions – and uses 
a single runtime to execute that graph on any platform with high efficiency. Existing 
frameworks paved the way with optimized graph execution and modular pipelines, but 
they lacked this one-graph-to-rule-them-all unification. The combination of SOTA (visual 
design and training of ONNX models in LabVIEW) and ONNX GO HW (universal graph 
orchestration with hardware access) can be seen as a step forward toward truly unified, 
portable, and real-time AI system orchestration. It aims to deliver the ergonomics of 
LabVIEW, the portability of ONNX, and the performance of optimized runtimes, in one 
package[46][48]. If successful, this approach could significantly reduce the complexity 
of deploying advanced AI systems in domains like robotics, industrial control, and 
autonomous vehicles – empowering a single graph to reliably run an entire intelligent 
workflow from sensing to actuation, regardless of the underlying hardware. 

Sources: The information in this review is drawn from recent scientific papers, industry 
documentation, and technology blogs. Key references include academic studies on 
neural network compilers and scheduling[18][4], surveys on graph neural networks[9], 
and documentation of frameworks like NVIDIA Triton[31], Holoscan GXF[33], ROS 2[38], 
DeepStream[36], Vitis AI[42], AMD ADF[43], and Qualcomm QNN SDK[25]. The 
discussion on ONNX GO HW and SOTA is based on reports from Graiphic’s 2025 GLA 
Summit presentation[41][48] and follow-up articles[2][52], which outline this emerging 
unified graph approach. 
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